
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

81

Manuscript received February 5, 2022
Manuscript revised February 20, 2022
https://doi.org/10.22937/IJCSNS.2022.22.2.11

A Novel Black Box Approach For Component Adaptation Technique

 B.Jalender Dr.A.Govardhan
Associate Professor/IT Professor & Rector

 VNRVJIET,Hyderabad JNTU,Hyderabad

Summary
There are several ways to improve software performance by
using existing software. So, the developments of some programs
are the most promising ways. However, traditional part
programming studies usually assume that the components are
recycled “as is”. Existing models of component objects only
provide limited support for partial adjustments, namely white box
technologies (copy-paste & inheritance) and the black-box
methods (such as mixing and encapsulation). These technologies
have problems related to recovery, efficiency, implementation of
indirect costs, or their own problems. This paper suggests as
JALTREE, The Black Box adaptation technology, which allows
us for the implementation of previous components, but we need
configurable the interface types, for measuring the adaptability.
In this article we discussed the types of adjustments including
component interfaces and component composition. An example
of customizing JALTREE and component can be illustrated in
several examples
Keywords:
Adaptation, Software Reuse, Component, White box, Black box

1. Introduction

CBSE is more and more focused on software engineering
in the world. The main goal of CBSE is to create a set of
reusable software components may be used to develop
component based (CBD) applications [1].

In this article, we are going to discuss the techniques
described of CBSE not sufficient to cope with all the
necessary adjustments without showing potentially
significant problems. Examples of these problems are the
failure to reuse components because they cannot be adapted
and the specifications themselves are adapted. In addition,
software engineers can make significant efforts to
understand the components before they can adapt. In
addition, non-transparent adaptive techniques can cause
self-problems. Finally, adjusting components can require a
lot of code and very simple behaviors, such as messaging
messages [2].

To answer these questions, we had introduced the term
JALTREE, which allows software engineers to set up
previous but configurable types of functional components
at one place. For example, switching behavior is an
interface to adjust the design pattern of the adapter and the
design pattern adapter is used by customer specific
interfaces. JALTREE allows software designers to

customize components by identifying new types of adaptive
behavior; software engineers can define a new type of
adaptation. Finally, software engineers can create different
types of behavior for individual components [3].

We believe that the contribution of this document is to

determine the requirements that must be met through
component adaptation technologies and to identify the
problems related to the technology of adaptation to
traditional components. In addition, JALTREE offers a new,
additional technology. Finally, we propose a number of
useful behavioral modes of Java, C++, Python and C
languages that can improve recovery components and
support direct language on JALTREE [4].

1.1 Systematic Reuse

Systematic reuse of software has become a promising
approach to improving the productivity and quality of
software development. Many large companies have
launched systematic re-use programs and have developed a
number of reuse frameworks to help organizations carry
out these activities. However, in practice, it is difficult to
achieve system recovery. In this paper, we believe that the
algorithm will give the incentive conflict associated with
traditional reuse procedures [5].

1.2 Software Reuse

Software Engineering describes a technology

collection that implements the engineering approach of
building and supporting software products. The technology
is used here in a broad sense, i.e. concepts, principles,
development approaches, methods, tools, techniques, and
even software processes. During the limited period of the
project's organizational effort, people and endowed with
other resources needed to produce a certain result [6][7].

Software engineering involves the development of
software systems. As software systems have grown in size,
new software development methods have emerged. These
methods include object-oriented programming, component
oriented programming, appearance-based programming,
and more. These methods provide better insight into the
presentation and development of software systems.
These methods are inspired by the real world and provide
a rapid development method for the system [8]. In this
article we are dealing with the principle of reuse, which
can be applied to all types of methods. In this case,

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

82

methods and object elements are considered to be the main
concepts of software recovery. Code recovery means using
existing code or components in a software system. This
existing code can exist in the form of libraries, add-ons, or
software developed by other users[9].

There are also different recovery methods and those
type of interface has its own advantages and costs. A
software system is a collection of various software
modules or components that are integrated as a whole
system. After adding software components, the entire
software lifecycle has changed. It is now necessary to test
and evaluate each component of the software separately,
and if these components are already in the execution mode
of some other application, it is sufficient to connect to the
current application of these software components [10].

It is now necessary to experiment and evaluate the
interconnection code and software components. The initial
investment is necessary to initiate the recovery process,
but the investment is not utilized after a certain recovery
period [11].

In short, the repository and recovery process will create a
knowledge base that improves quality after each
recovery.Reusing the software allows programmers to take
advantage of their past performance and help significantly
increase the productivity and quality of the software. The
contribution of this document is an indicative process
designed to effectively implement software reuse. A key
issue with current reuse software is the lack of a standard
process model that describes the details needed to support
recovery-based software development. Since the beginning
of programming, the software has been restored after the
application has been developed. However, the practice of
re-use is mainly temporary, and any reuse is not fully
realized[12]
.
Implementation of Reusable Software Component Design
Software Engineering Institute will develop a reuse-based
approach. This JALTREE algorithm will discusses the
current direction and progress of methodological work.

1.3 Component Classification

The reusable software element is generally known as a
component. The Components may consist of ideas,
projects, source code, link libraries and testing strategies,
but they are not needed. In the classification, developers
must specify which components or what type of
requirement components they need. These requirement
components should be brought into the library, assess
eligibility and, where necessary to develop the component.
If the developer is satisfied with taking back the
appropriate component, he or she may add it to the current

system development. The component recovery system is
designed to identify the exact component that is required
or closest to the match in the minimum time frame using a
valid query. The restored components should be available
for choice.

Classification of components for recovery is more
complex than the classification of books in the library. The
current classification process is categorized by software
components are divided into the following categories:
These categories are free text, counted, property value and
versatile. The selection of each method is assessed on the
basis of the results described in the system of good
recovery [13].

The gap between the growing demand for complex
software systems and the ability to deliver high-quality
software at the right time and at low cost will grow. This
has led to tremendous pressure to increase the productivity
and efficiency of software development. Software
engineering research has been driving the challenge of
accelerating software development and reducing costs for
many years [14].

Opportunities are arise an effective interface for
restoring the repository is necessary for the success of each
component of the programming system. However, these
interfaces must overcome several issues in order to
achieve the goal of supporting the use of software reuse.
The main problem is the recovery barrier. Assuming that
the developer initiates the recovery process when needed,
most current reusable repository systems are designed to
be independent of the current process and programming
tools [15].

The reuse system described here is based on the
principles of classification and thresholds. It allows
software designers to define components and restore
components that are similar to the required components.
An algorithm describing the component behavior to be
recovered. When the reuse component is selected for the
necessary operation, the recovery system enumerates the
package list of the operation group. A linear search
algorithm was also reported to specify a reuse list for the
package. If the recommended packages do not match, the
user can try to find a slightly different set of tasks for other
components. This approach makes it easier for users to
navigate similar components to identify the best reuse
component. The proposed classification algorithm will
apply the techniques that are used for developing the
adaptive component. This classification uses attribute
values for different parts of the component. The value of
the attribute pattern is initially used to determine the
classification for components, platform of operating

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

83

systems, and programming languages[16]. This
classification is discussed in the below section .

An element is software that is compatible with the
component model and can be used and created
independently, without the need to modify it according to
the combined criteria. Typical examples of specific areas
components are interfaces, computer components, memory,
administrators, controllers, and network services.
Components can come from many disciplines, in multiple
languages, or from project-style records. The component
version may also exist. Due to the large number of
components, we believe that the component management
system is required to monitor all available component
properties. To add reusable components to the system,
developers must be able to find and understand them. If this
process fails, recovery is not possible [17].

Sorting software allows users to organize collections of
structural components so that they can be easily searched.
A number of tests have been conducted to classify reusable
components using a variety of methods. These methods are
usually used with caution. All four main methods
described (free text, attribute values, calculations, and
comprehensive classifications) have advantages and
disadvantages associated with them [18].

The proposed classification algorithm will apply the
techniques that are used for developing the adaptive
component. This classification uses façade design pattern
for classify the values for different parts of the component.
The architecture of the design pattern is initially used to
determine the classification for components and different
platformof the operating systems, and different types of
programming languages [19].

 The façade design pattern method allows to search for
regular domains or specific domains when necessary.
Classify the functionality of components using a common
approach. In addition to the functional code, there is also a
version of the component. A component version is directly
related to its overall functionality, how it works, and how
the component adapted [20].

The system also saves the specifications for each
component loaded into the repository. Therefore, the
system can also support keyword-based searches. If the
system stores most of the functionality of a component, the
system works better and can be used in a variety of ways.
Systematic reuse of software is considered to solve short-
term development problems without affecting performance.
Research is under way to develop more user-friendly and
efficient recycling system. Plan to use many tools and
mechanisms to support reuse in software development [21].

Software components plays an important role in the field
of software development process of the software industry.
So many articles through the entire lifecycle of the process,
each one has its own highlighted to achieve the work of
the products. Every working recovery helps reduce costs,
reduces time and reduces efforts as a benefit. If different
components are developed in a variety of environments in
a repository, it is imperative to design reusable
components [22].

The literature addresses different approaches which
have consequences. Many of them have been proposed and
only the code has been addressed as part of an isolated
environment. The problem of incompatibility with
inherited components motivates the offer approach to
production of reusable design components for the legacy
components and reuse in different environments. This
type of approach helps software developers develop the
software faster and easier [23].

The software industry requires re-use to reduce budget
and reduce efforts. This can be achieved with attractively
reusable components. A number of approaches are given
and only a recovery code only. However, the issue of
incompatibility with legacy components was discussed with
the design of reusable components of legacy components in
different environments. In this article explains generate the
reusable projects to determine the inherited and recovered
components classification according to domain knowledge.
This lead to the implementation of the methodology, which
can be tested with reuse levels corresponding to different
environments [24].

2. Component Adaptation Techniques

In this research article, we presented some basic
concepts and principles of component models and
component model applications. The component models
define interfaces, naming, interoperability, customization,
composition, evolution, packaging, and distribution
standards. In addition, the specifications of the run-time
environments and services are required to standardize the
component models. Typically, there are several component
model implementations on top of an operating system, but
some operating systems, such as Microsoft Windows, have
already begun to include component model
implementations. Finally, operating systems can serve as
component model applications directly to the CBSE [25].

 Object-oriented software can easily adapt to new
requirements because of the high level of abstraction. It
models problems with the set of types or classes from
which objects are created.An object has focused the
creation and rapid evolution of the system. There is no step
icon organize in this process. A similar pattern of
development of the software and development speed.
Objects can grew up in rapid application development in

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

84

software engineering. Adaptive Software Development is
overall team focused on the problem of establishing the
self-absorbed, sharing ideas, and individuals and teams
online [26][27].

Software components can be deployed and distributed in
the collection class, and then adapted to the needs of
accountability in our sub-class. Unfortunately, by Sub-
class a class collection interface may require redeployment
of the different class just because they use crumbled,
parent of a subcomponent that is referred to the sub
classification.

The anomaly of the sub -class is a problem as it can be
completely negated the benefits based on defending the
program. We propose a code called adapting language and
system designed to anomaly of sub-class. Classification
not leads to a new class and stand alone as sub-class, but it
gives existing classes and update the collection interfaces.
If approved, the new language for programs based on the
similaritywords. Judging by words like C # and Java,
classification can save the important conservation of the
evolving relationship with the class and improve
adaptability of system software [28].

When the external interface of a component is
explicitly defined to reduce the subordination share that is
made between the component and the encapsulation
component, it is created in order to use only through the
internal interface. Outside the details should be hidden
inside of the encapsulation components, and hidden data
can protect the internal awareness of the components from
the near. And the errors can be local in the internal
language of encapsulation components, and hidden data
also reduce the number of interfaces between each
component, they do not affect the changes in the execution
of other components because they use components that are
not related to other component operations. So it is good
and easy to get not only maintenance but also extend to
other new programs [29].

 Reuse of components is a method that will contain a
system builder consisting of components such as blocks
made. Reuse of black boxes without any changes in the
detailed events that occur in the internal components
generally. In the case of black box for recovery, the most
important idea is to hide the data. When using a black box,
there is a hidden reason for the main concept is that it can
extend the reuse of the component because it is not
necessary to know the details of such components, because
this hide is good enough to abstracted [30].

2.1 Adaptation Techniques

If we use a traditional object-oriented programming
language, software engineers have three parts of

customization techniques that can be used to modify
components for reuse, namely copy and paste, inheritance,
and packaging. The following paragraphs describe each
technology and then evaluate the requirements identified
[31].

Sub classing from a collection of dependent classes may
require making use of all class component classification
and its class of dependent on parent node. In order to use
this if not valid class is referred to as a special sub class.
The sub classes a special involvement since it can take
away the benefits of inheritance. Then we suggest
eliminating the anomaly of sub class with class.

An object oriented programming language
accompaniment for sub classing. In diversity to sub
classing the class, not to creates new component, but, give
and make a class. The class is not limited to a single class
and re produce across a collection of related classes, new
classes all collections lead to skipped class. Therefore, the
class must maintain the collection of classes in assurance
that replace a program update class translation of all in
class [32].

2.1.1 Copy and Paste

By using this copy paste technique the component is
going to provides a little resemblance to the components
required by the software engineer, the most efficient
method can copy the code that corresponds to the segment
of the component that is going reused as the development
component.

Once the code is copied, the software engineer usually
makes it convenient to adapt to the context of the new
component, and the other functions are defined or copied
from different sources called as code cleaning technique
[33].

Combine: The code aggregation will use adaptive
functions more efficiently and use of components is very
low. In those situations where it is necessary to write
different types of behavior, software engineers must
manually connect to the entire code [34].

Configure: Customizing components by copying and
inserting is not a first class installation behavior and
therefore cannot be configured.

Reuse: Adaptive reuse is not a extravagant representation
and is an interrelated code that restores the component,
components can be used or adapted to integrate the same
behavior and replication.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

85

2.1.2 Inheritance

The second method of adjusting and reusing the white
box is fulfilled by inheritance. For example the inherited
collection and C++ execute the condition and behavior of
the component to be reuse. Another example, in the case
of Python, all methods and estimates defined in super-
classes are available in subclasses.

Transparent: transparent inheritance, because subclasses
are implicitly transmitted through a super-class. If reuse
components, there is no difference super classes and
customer object notifications using examples of imported
subclasses [36].

Configuration: As explained above, although adaptive
behavior is described by a extravagant unit i.e. subclass
and inheritance cannot be configured to accommodate a
certain portion of behavior.

2.2 Integrated software development process

The phases in software development life cycle are
analysis, specification, design, and application and all
these are use on the same for developing integrated
software. Well integrated, means that the design by using
modified can be linked back to the model [37].

2.2.1 Encapsulation (Information Hiding)

Ability to hide the device and other components of the
system. Components cannot be determined because the
quality of the product does not depend on the method used
to communicate [38].

2.2.2 Polymorphism

With the development of technology, different types of
objects make special facts. Objects that are close to objects
that represent the similar entities of the object oriented
programming [39].

2.2.3 Wrapping

The package declares one or more than one components
as part of the packaged component, but the component had
only composition options and can only send a small
change to the packaged component of the client's
requirements. There is no clear line between the packaging
and the collection, but the packaging is used to adjust the
behavior of the components that are closing, and adding
aggregation, can combine new features with existing
components that provide related functionality. The
significant drawback of packaging is that it can lead to

significant overall costs, since a complete packaging of
reusable components has to be a classified, including the
non-personalized interface elements [41]. The required
grouping is estimated as follows.

Transparent: The package is fully adapted to an adaptive
component, the component client cannot send messages
directly to the part, but must always pass the package. This
needs the container to process all components that can be
directed to the component, including those is need not
adapted.

Configuration: Although adaptive behavior is provided
by the primary drive, i.e. the container, it is generally not
possible to configure some parts of adaptive behavior. For
example, if the container requires to change the operation
name of the adapter component, usually cannot configure
the container with a new action name because it must be in
a reusable container [42].

2.2.4 Differences between adapting components and
classes

Object that complies with the rule (OOD) is the
principle of justice for change in the system model and
encourage Software Engineers to modularize code verifier
to reduce the impact of changes in the future. OOD is the
process in two ways to serve above purpose. First in its
class with a corresponding public and private use, support
a secret message class. Second, the inheritance is a
mechanism which it acquires a property of one or more
other objects. The programmer associated with the tools to
learn of the hierarchical inheritance, do good for reusing
the existing code, leading to poor design [43].

Table.1 Component adaptation techniques Vs different
technologies

Software Architecture and inheritance are the different
modeling to be used in a variety of architectural
description languages (ADLs), such as ACME
Architectural model[46] to specify that when the interface
inheritance now notably, the use of objects associated with
the particular type [44].

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

86

However, there is lot of difference between Component
Based Software Engineering (CBSE) and the Object
Oriented Programming (OOP) is to wish the engineers to
adapt an existing component that complies with the
software needed to perform the difficult task of
understanding the class hierarchies. Especially, the adapter
must determine the portion of the class to do better to
make the change when the first commitment is not broken.
Often, additional classes were added to the page in order
not to change the structure of the class was better for
modifications to the existing classes.

Therefore, there is a tacit warning and the objects
associated with the designer's technology system and the
maintainer adapter is same. We seek to find ways for a
builder to use practice and protect the knowledge only and
its related documentation [45].

3. PROPOSED ALGORITHM

Start

S1 and S2 are the subsets of ∑(S1,S2) S.

S3-> (S1^S2)

if S1 and S2 are the subsets

 then

 S4->S1 && S2

If S1 and S2 or S4 and S3 are the Subsets

then

S->∑(S1,S2) + (S3&&S4)

S1->Selective component 1

S2->Selective component 2

S3->Adaptive component

S4-> Adaptive component

∑->superset of S1, S2

The above algorithm describes about the black box
approach for component adaptation techniques.

S,S1,S2,S3,S4 are the components of different
technologies. The compositions of two systems are
represented by S[k1] and S[k2]. The final component

must be configured and can be combined to allow the
adaptation of complex components.

4. Black Box Approach For Adapting Components

JALTREE as a new technique and very suitable
technology for adjusting the components of a component
system. The JALTREE principle is that the functions of
the components and components of the regulation are two
independent units on the one hand and on the other must
be closely integrated.

Based on the above observations, we found that the
partially based software engineer requires multiple types
of customization of the reusable addition, along with a
variety of reusable components. This type of control must
be configured and can be combined to allow the adaptation
of complex components. This section specifies the
adaptation of different types of components and will be
presented here [46].

Big component consists of components and other
adjustments, this combination must be transparent. In other
words, the party and the customer do not need to know of
the existence of the corresponding entity. Furthermore, the
adapted entities do not need to be aware of the existence of
other adaptation measures.

4.1 Component Adaptation types

In our work to adjust the part, we identified three typical
components, namely changes, component interfaces,
component composition, and component monitoring.
In the below sections each category will be discussed in
more detail.

4.1.1 Component interfaces

A software component is a unit of composition with
contractually specified interfaces. In C++ and java the
interfaces used by the programmers using
COM(Component Object Model).Using this component
model we use the abbreviation of the abstract class of
C++ and java technologies. These stubs inherit from the
base interface abbreviation but are not inherited at the
component level COM model. When you use the
component again, the wrapper and position are irrelevant
and you are forced to interact with the class in an abstract
way. When you reuse a class for inheritance or
decomposition, it can access its entire state (except for
members of a private class) and does not follow the
advantages of the defined interaction protocol. You are
forced to learn to reuse a class implementation just as you
develop it yourself. The discovery of the interface will
allow the component to use different components without
prior knowledge of the applied interactive protocol. When

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

87

you think of a component as a physical package that
contains one or more logical components that are typically
rendered through a set of interfaces.
4.1.2. Component Composition

Composition is not supported: there is no support for the
composition at any level. In the operating system,
applications are executed independently and do not need to
interact with other applications. Data exchange between
applications is possible due to the communication
mechanism between processes. However, even if the
application uses an operating system service, the
application is not specified correctly.

4.1.3 Component Monitoring

The above discussed part of customization categories
includes a change in the behavior of components to be
reused, such as their interface. As the name suggests, this
class focuses on tracking components, so other parts refer
or rely on when a specific event occurs in the monitored
component. In the following we examine the monitoring of
three examples that will be mutually accessible for the
reusable components, i.e. indirect calls, observer design
patterns and status monitoring. The second is the first type
of specialization [48].

Below figure.1shows that JALTREE is depicts as
graphically. Shows a basic custom component with two
types of customization. In our graphical JALTREE
interface we have designed components of different
technologies for C, C ++, Java and Python.

Figure.1 Component adaptation through JALTREE

Below figure.2 describes that JALTREE is represented
graphically. The main components that use both types of
components but the Adaptive components are

encapsulated scalability, but according to the end user
requirements the adaptation part is done [47].

Figure 2. Component adaptation through JALTREE same components

without cluster

Below figure.3 illustrates that graphically JALTREE is
represented for the component adaptation. Adaptive
components are encapsulated scalability and the main
components that use both types of components. In below
figure.3 the C, C++,and Java components are in the same
subsets.And .net and vb are in the different subsets.

Figure 3. Component adaptation through JALTREE same components
with cluster

Implicit Call: This type is actually a generic type of
component monitoring. The definition of 'indirect
reference' includes the direct notification of the delivery of
the message or the implicit reporting of related
components by generating the event, when certain
conditions or transactions of a controlled component occur.

MVC model is very useful, it is assumed that software
engineers know that if they define an object they stick to
other objects. Construction of component systems,
components sometimes have to be reused, but usually the
components are not ready for this purpose. Therefore, the
observer mode function must be an integral part of the
other component so that it can be used as a monitoring
component. Adaptive behavior is communication that is
responsible for the management and involvement of
objects. Only the implementation of the notification is
defined in the formal provisions. The classification level

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

88

code behavior is left to the exercise of the end user. The
observer's design pattern is specialized for the type of
indirect notification. The informal mapping function
extends the mapping of interface three elements to all
related objects as defined with the observer model, the
modified method is called [49] and its shown in below
MVC Architecture (figure.4) .

Figure 4.MVC Architecture

Situation monitoring: In some cases, the final end user is
not satisfied the adaptive component. So component does
not wish to report any changes in the relevant component,
but only when the reuse levels exceed a certain limit. The
traditional observation of the observer's model is not
complete, but the use of it to achieve this behavior is very
feasible. This allows software engineers to reuse
components to determine which areas of the state should
define related components.

4.2 Evaluation of Trees

JALTREE technique is a tree fashion technique which is
used for adaptive reuse to meet the requirements in the
order to overcome the traditional adaptation techniques do
not meet the requirements.

Transparent: The Fit type, which can be cross-sectional,
is completely transparent. The component identity is
maintained and the adjustment type only affects those
aspects of the component that need to be adjusted.

Configurable: The type of adjustment consists of the
general part and the specific part. To select, and able to
define specific sections for each instance of adjustment
type. Furthermore, the general type of part adjustment is
available in all cases and is therefore the most widely used
level of reuse for adaptive component [50].

5. CONCLUSION

The Component Based Software Engineering (CBSE) is
becoming increasingly important role in the field of
software industries. It can effectively create applications
that can reuse components. The most conventional
methods accept that components in these applications that
are reused "as is", but that the "rest of" reuse is unlikely

and that most components need to be customized for the
application. The JALTREE is a new method used for
component reusability using black box technique and it is
going to rectify the problems faced is the software
development life cycle. Traditional component adjustment
techniques are copying, pasting, packaging and inheritance.
In this Article first we given the adaptation technique
using white box, and the second example is given using
black box adaptation technology. None of the traditional
methods can meet one or more of the specified
requirements.

In this paper we discussed the four parts of JALTREE
that is ready to adapt the reusable components, in addition
to the set of reusable components; a partially based
software engineer also requires multiple types of
customization of reusable components. For example,
different types of adaptive behavior are proposed and
defined, i.e. component adaptation, component assembly
and component monitoring.

JALTREE implements the structure of tree fashion
through the layered concept. JALTREE is an expanded
Component Object Model that contains parts such as state
and behavior of the component, Category level, including,
variables and methods. Through JALTREE, we can
provide software engineers with a powerful type of
component customization. To illustrate this point, four
types of technological adaptation have been introduced.

REFERENCES:

[1] A. Kaur and K. S. Mann, “Component Selection for

ComponentBased Software Engineering,” International
Journal of Computer Applications, vol. 2, no. 1, 2015,
pp. 109-114.

[2] A. Vescan, “Pareto Dominance - Based Approach for the
Component Selection Problem,” Second UKSIM
European Symposium on Compute, 2013, pp. 58-63.

[3] N. Haghpanah, S. Moaven, J. Habibi, M. Kargar, and S.
H. Yeganeh, “Approximation Algorithms for Software
Component Selection Problem,” in Proc. Asia Pacific
Software Engineering Conference, 2007, pp. 159–166.

 [4] A. Kumar, P. Tomar, N. S. Gill, and D. Panwar, “New
Optimal Process for Selection of Software Components,”
in Proc. 1st National Conference on Next Generation
Computing and Information Security, jointly organized
by Computer Society of India and IMS, Noida, U.P.,
India, 2010, pp. 376.

 [5] IEEE Standards Board, “IEEE Standard Glossary of
Software Engineering Terminology,” Computer Society
of the IEEE, 1990.

[6] E. M. Fredericks, B. DeVries, and B. H. C. Cheng,
“Towards run-time adaptation of test cases for self-
adaptive systems in the face of uncertainty,” in

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

89

Proceedings of the 9th international symposium on
software engineering for adaptive and self-managing
systems, 2017, pp. 17-26.

[7] E. Fredericks. Machine learning and language syntax:
The genetic language parser. M.s., Oakland University,
2010.

[8] Balzer, R., ``A 15 Year Perspective on Automatic
Programming'', IEEE Trans. on Software Engineering,
vol. 11, no. 11, Nov. 1985, pp. 1257-1267.

[9] Biggerstaff, T. and A. Perlis (eds), Software
Reusability (2 vols.), ACM Press / Addison-Wesley,
1989.

[10]Batory,D., etal., ``Scalable Software
Libraries'', Proc.ACM SIGSOFT '93: Symposium on
the Foundations of Software Engineering, Los Angeles,
CA, Dec. 1993.

[11] Booch, G., Software Components with Ada, Benjamin-
Cummings, 1987.

[12] Dewar, R. B. K., The SETL Programming Language,
manuscript, 1980.

[13] Efremidis, S. and Gries, D., ``An Algorithm for
Processing Program Transformations'', Tech. Report TR
93-1389, C.S. Dept., Cornell Univ.

[14] Gautier, R. and P. Wallis, Software Reuse with Ada,
London: Peter Peregrinus Ltd., 1990.

[15] Goguen, J. A., ``Reusing and Interconnecting Software
Components'', IEEE Computer, Feb. 1986, pp. 16-28.

[16] Goguen,J.A., “Principles of Parameterized
Programming”, in software reusability:vol.1 concepts
and models,pp.159-225.

[17] Andres J. Ramirez, Erik M. Fredericks, Adam C.
Jensen, and Betty H.C. Cheng. Automatically relaxing a
goal model to cope with uncertainty. In Gordon Fraser
and Jerffeson Teixeira de Souza, editors, Search Based
Software Engineering, volume 7515 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2012.,
pages 198–212

[18] E. M. Fredericks, B. DeVries, and B. H. C. Cheng,
“Autorelax: automatically relaxing a goal model to
address uncertainty,” Empirical software engineering,
2014,pp. 1-36.

[19]Erik M. Fredericks, Andres J. Ramirez, and Betty H. C.
Cheng. Towards run-time testing of dynamic adaptive
systems. In Proceedings of the 8th International
Symposium on Software Engineering for Adaptive and
Self-Managing Systems, SEAMS ’13, IEEE Press,
2013.pages 169–174.

[20]Erik M. Fredericks and Betty H.C. Cheng. Exploring
automated software composition with genetic
programming. In Proceeding of the fifteenth annual
conference companion on Genetic and evolutionary
computation conference companion, GECCO ’13
Companion, Amsterdam, The Netherlands, 2013.
ACM., pages 1733–1734

 [21] Mark Harman, S Afshin Mansouri, and Yuanyuan
Zhang. Search based software engineering: A
comprehensive analysis and review of trends techniques
and applications. Department of Computer Science,
King’s College London, Tech. Rep. TR-09-03, 2009.

[22] Sandeep Neema, Ted Bapty, and Jason Scott.
Development environment for dynamically re-
configurable embedded systems. In Proc. of the
International Conference on Signal Processing
Applications and Technology. Orlando, FL, 1999.

[23] Nelly Bencomo and Amel Belaggoun. Supporting
decision-making for self-adaptive systems: from goal
models to dynamic decision networks. In Requirements
Engineering: Foundation for Software Quality,.
Springer, 2013.pages 221–236

[24]John H. Holland. Adaptation in Natural and Artificial
Systems. MIT Press, Cambridge, MA, USA, 1992.

[25]Conor Ryan, JJ Collins, and Michael O Neill.
Grammatical evolution: Evolving programs for an
arbitrary language. In Genetic Programming,. Springer,
1998.pages 83–96

[26] John R Koza. Genetic programming as a means for
programming computers by natural selection. Statistics
and Computing, 4(2): 2014,87–112.

[27] N. Bredeche, E. Haasdijk, and A.E. Eiben. On-line, on-
board evolution of robot controllers. In Pierre Collet,
Nicolas Monmarch ́e, Pierrick Legrand, Marc
Schoenauer, and Evelyne Lutton, editors, Artifical
Evolution, volume 5975 of Lecture Notes in Computer
Science,. Springer Berlin Heidelberg, 2010.pages 110–
121

[28] Richard P Gabriel, Linda Northrop, Douglas C Schmidt,
and Kevin Sullivan. Ultra-large-scale systems. In
Companion to the 21st ACM SIGPLAN symposium on
Object-oriented programming systems, languages, and
applications,. ACM, 2006,pages 632–634.

[29] Gries, D., ``The Transform: a New Language
Construct'', lecture presented at the University of Texas,
Feb. 18, 1991.

[30] Hille, R. F., Data Abstraction and Program
Development using Modula-2, Prentice Hall, 1989.

 [31] Kruchten, P., E. Schonberg, and J. Schwartz,
``Software Prototyping using the SETL
Language'', IEEE Software, vol. 1, no. 4 (Oct. 1984), pp.
66-75.

[32] Lamb, D., ``Sharing Intermediate Representations: The
Interface Description Language'', Tech. Report CMU-
CS-83 129, C.S. Dept., CarnegieAuthor No.1, Author
No 2 Onward, “Paper Title Here”, Proceedings of xxx
Conference orJournal (ABCD), Institution name
(Country), February 21-23, year, pp. 626-632.

[33] Bosch, Jan. "Superimposition: A component adaptation
technique." Information and software technology 41.5
(1999): 257-273.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.2, February 2022

90

[34] Geert Hofstede, Culture’s Consequences: International
Differences in Work-Related Values (Beverly Hills,
CA:Sage Publications, 1980), p. 19.

[35] M. Rokeach, The Nature of Human Values, New York,
The Free Press, 1973. • H.M. Trice and J.M. Beyer, The
Culture of work Organisations, Englewoods Cliffs, NJ,
Prentice Hall, 1993.

[36] J.P. Kotler and J.L. Herkett, Corporate Culture and
Performance, New York, The Free Press, 1992.

[37]E.H. Schin, Organisational Culture and Leadership, 2nd
ed., San Francisco, Jossey-Bass, 1992.

[38]. Burke W.J. ; Merrill H.M. ; Schweppe F.C. ; Lovell
B.E. ; McCoy M.F. ; Monohon S.A. IEEE Transactions
on Power Systems, 1988 vol: 3 issue: 3, 1284-1290

[39]. Advertising versus pay-per-view in electronic media,
Prasad, A. ; Mahajan, V. ; Bronnenberg, B.,
International Journal of Research in Marketing year:
2003 vol: 20 issue: 1 pages: 13-30

[40]. Consumers' trade-off between relationship, service
package and price: An empirical study in the car
industry, Odekerken-Schroder Gaby ; Ouwersloot
Hans ; Lemmink Jos ; Semeijn Janjaap European
Journal of Marketing year: 2003 vol: 37 issue: 1-2
pages: 219-242

[41].AFFONSO, F. J.; NAKAGAWA, E. Y. A reference
architecture based on reflection for self-adaptive
software. In: Software Components, Architectures and
Reuse (SBCARS), 2013 Seventh Brazilian Symposium
on. [S.l.: s.n.], 2013. p. 129–138. [In press].

 [42]ANDERSSON, J. et al. Reflecting on self-adaptive
software systems. In: SEAMS/ICSE 2009. [S.l.: s.n.],
2009. p. 38 –47.

[43] SALEHIE, M.; TAHVILDARI, L. Self-adaptive
software: Landscape and research challenges. ACM
Trans. Auton. Adapt. Syst., ACM, New York, NY,
USA, v. 4, n. 2, p. 1–42, maio 2009. ISSN 1556-4665.

[44] BENCOMO, N. et al. Requirements reflection:
requirements as runtime entities. In: Software
Engineering, 2010 ACM/IEEE 32nd International
Conference on. [S.l.: s.n.], 2010. v. 2, p. 199–202. ISSN
0270-5257.

[45] JANIK, A.; ZIELINSKI, K. Aaop-based dynamically
reconfigurable monitoring system. Inf. Softw. Technol.,
Butterworth-Heinemann, Newton, MA, USA, v. 52, n.
4, p. 380–396, abr. 2010. ISSN 0950-5849.

 [46] PENG, Y. et al. A reflective information model for
reusing software architecture. In: CCCM/ISECS 2008.
[S.l.: s.n.], 2008. v. 1, p. 270 –275. [22] SHI, Y. et al. A
reflection mechanism for reusing software architecture.
In: QSIC 2006. [S.l.: s.n.], 2006. p. 235 –243. ISSN
1550-6002.

 [47] ESFAHANI, N. A framework for managing
uncertainty in self-adaptive software systems. In:
Automated Software Engineering (ASE), 2011 26th
IEEE/ACM International Conference on. [S.l.: s.n.],
2011. p. 646– 650. ISSN 1938-4300.

[48] SOUZA, V. E. S. et al. Awareness requirements for
adaptive systems. In: Proceedings of the 6th
International Symposium on Software Engineering for
Adaptive and Self-Managing Systems. New York, NY,
USA: ACM, 2011. (SEAMS ’11), p. 60–69. ISBN 978-
1-4503-0575-4.

[49] Shahanawaj “AhamadEvolutionary Computing Driven
Extreme Learning Machine for Objected Oriented
Software Aging Prediction” IJCSNS Vol. 22 No. 1 pp.
781—78-2022.

[50] Ch. Kishore Kumar , Dr. R. Durga “Estimation of
Software Defects Use Data Mining-Techniques of
Classification Algorithm” IJERT Vol. 10 Issue 12,
December-2021

