초록
2019년 이후부터 전 세계적으로 미세플라스틱(Microplastics)에 관한 연구가 활발하게 진행되고 있어 국내·외 미세플라스틱 연구에 대한 차이점을 분석하는 것은 국내연구 방향 수립에 이정표가 될 수 있다. 본 연구에서는 KCI와 WoS에서 미세플라스틱 논문들을 발췌하여 저자 키워드동시출현단어분석, 논문동시인용분석, 저자동시인용분석 등 빅데이터를 기반으로 한 네트워크 분석방법론으로 국내외 연구 차이점을 분석했다. 분석결과, 연구주제 분석은 인간의 생체에 영향을 미칠 수 있는 연구와 일상에서의 미세플라스틱의 처리에 관한 연구가 국내에서 추가로 필요함을 확인하였다. 연구 품질을 살펴보는 논문 인용 깊이 분석에서는 국외 2.25와 국내 1.39로 국내가 아직 부족함을 보였고, 다양한 연구자들이 참여하고 정보를 공유하는 공동연구전선 구성형태 분석은 국내는 22개 군집 중에서는 3개가 Star형 구조가 있고, 국외의 경우는 19개 군집 모두가 Mesh 구조로 되어 있어 국내는 특정 연구 분야에서는 정보의 흐름과 공유가 부족함도 확인할 수 있었다. 이런 연구 결과는 미세플라스틱의 연구주제 확장과 연구 질의 향상, 더불어 다양한 연구자들이 참여하는 연구 추진체계 개선 등이 필요함을 확인하였다. 추가로 주제 모델링(Topic Modeling)을 기반으로 자동화 프로그램 개발을 한다면 실시간 분석이 가능한 시스템 구축도 가능할 것이다.
Since 2019, research on microplastics has been actively conducted around the world, so analyzing the differences between domestic and foreign microplastics research can be a milestone in establishing the direction of domestic research. In this study, microplastic papers from KCI and WoS were extracted and the differences between domestic and foreign studies were analyzed using a network analysis methodology based on big data such as author keyword co-occurrence word analysis, thesis co-citation analysis, and author co-citation analysis. As a result of the analysis, the analysis of the research topic confirmed that studies that could affect the human body and the treatment of microplastics in daily life were additionally needed in Korea. In the analysis of the depth of thesis citation that examines the quality of research, it was found that Korea was still insufficient at 2.25 overseas and 1.39 in Korea. In the analysis of the composition of the joint research front, where various researchers participate and share information, 3 out of 22 clusters in Korea are Star type. In the case of overseas, all 19 clusters have a mesh structure, so it was confirmed that information flow and sharing were insufficient in specific research fields in Korea. These research results confirmed the need to expand the research topic of microplastics, improve the quality of research, and improve the research promotion system in which various researchers participate. In addition, if the automation program is developed based on topic modeling, it will be possible to build a system capable of real-time analysis.