DOI QR코드

DOI QR Code

SME Bakery's Marketing Strategies Based on Apriori Algorithm

Apriori 알고리즘 기반의 중소 베이커리 기업의 대응 전략

  • 김도훈 (연세대학교 기술경영학협동과정) ;
  • 이현준 (연세대학교 정보대학원) ;
  • 이봉규 (연세대학교 정보대학원)
  • Received : 2022.01.01
  • Accepted : 2022.04.20
  • Published : 2022.04.28

Abstract

The importance of online marketing is emerging due to the prevalence of COVID-19. In order to respond to the changing business environment, we have collected ten years of sales data of SME bakery company that have experienced a decrease in sales due to the COVID-19. As a result of the analysis, we found that switching from offline markets to omnichannel B2B and B2C markets and taking 'small quantity batch production' to 'mass production in a small variety can improve management. This study presented online and offline marketing strategies through data analysis of small and medium-sized bakery companies, which have relatively insufficient digital capabilities compared to large companies, and could be a guideline for many SMEs.

COVID-19에 따른 온라인 마케팅의 활성화는 디지털 트랜스포메이션 가속화를 촉진하고 있다. 본 연구는 디지털 트랜스포메이션 역량이 부족하고 COVID-19로 수입 감소를 겪고 있는 중소 베이커리 기업의 10년간 매출 데이터로 Apriori 알고리즘을 사용하여 연관규칙분석을 수행했다. 분석 결과 오프라인 마켓 중심에서 온·오프라인 B2B, B2C 시장으로 전환하고, 다품종 소량 판매에서 소품종 대량판매 전략을 취하는 것이 경영 개선을 할 수 있는 것으로 나타났다. 향후 다각화된 마케팅 전략에 따른 다양한 채널의 판매 데이터를 분석하고 학습하면 많은 중소기업의 디지털 전략 대응을 위한 가이드라인이 될 수 있을 것이다.

Keywords

References

  1. Y. S. Cho. (2020). Plan to Enhance the Acceptance of SMEs Through Digital Transformation, Sejong : Korea Institute for Industrial Economics & Trade.
  2. S. H. Bae. (2021) Survey on small business owners 2020. Sejong : Korea SMEs and Startups Agency.
  3. T. H. Kim. (2020). Domestic Bakery Market Trends and Change in Consumer Trends. Seoul : KB Research.
  4. Boston Consulting Group. (2020). The Evolving State of Digital Transformation. Boston. BCG
  5. Y. H. Goh, Y. R. Yoon, J. N. Park & Y. E. Jo (2020). Research on how to utilize data for development cooperation-projects. Seongnam : KOICA.
  6. H. M. Lee (2018). Leading innovation in digital transformation. Technology Tech Issue. Daejeon : ITFIND.
  7. Y. O. Kwon. (2013). Data Analytics in Education : Current and Future Directions. Journal of Intelligence and Information Systems, 19(2), 87-100. https://doi.org/10.13088/JIIS.2013.19.2.087
  8. H. G. Jun, G. S. Hyun, K. B. Lim, W. H. Lee & H. J. Kim.(2014). Big Data Preprocessing for Predicting Box Office Success. KIISE Transactions on Computing Practices, 20(12), 615-622. https://doi.org/10.5626/KTCP.2014.20.12.615
  9. D. J. Kim, D. I. Park & J. S. Park. (2018). Study on the Change of Marketing Strategy through Data Mining Technique. Korea Business Review, 22(2), 177-194. https://doi.org/10.17287/kbr.2018.22.2.177
  10. J. S. Lee, J. H. Lee, G. J. Kim, S. S. Park & D. S. Jang. (2015). Establishment of Strategy for Management of Technology Using Data Mining Technique. Journal of Korean Institute of Intelligent Systems. 25(2), 126-132. https://doi.org/10.5391/JKIIS.2015.25.2.126
  11. Y. J. Yi, S. H. Lee & J. S. Yi. (2014). KB Kookmin Card's Marketing Activities and Use of Big Data. Korea Business Review, 18(1), 145-176.
  12. K. C. Ahn, C. B. Moon, B. M. Kim, Y. S. Shin & H. S. Kim. (2012). POS Data Analysis System based on Association Rule Analysis. Journal of the Korea Industrial Information Systems Research, 17(5), 9-17. https://doi.org/10.9723/JKSIIS.2012.17.5.009
  13. Y. H. Cho. (2020). A Study on the Service Marketing Promotion Plans of Hotel Bakery and Perception on Hotel Bakery by Analyzing Unstructured Big Data. Journal of Tourism and Leisure Research, 32(2), 285-298. https://doi.org/10.31336/jtlr.2020.2.32.2.285
  14. A. Dagvadorj, Y. R. Lee & H. S. Kim.(2020).A Study on the Consumer's Perception of Bakery Using Big Data Analytics. Culinary Science & Hospitality Research, 26(4), 66-75. https://doi.org/10.20878/CSHR.2020.26.4.007
  15. D. Y. Oh & D. H. Kim. (2017). Effects of Large Business Group's Intra-Firm Transaction on Small and Medium-sized Enterprises. Ordo Economics Journal, 20(2), 49-67. https://doi.org/10.20436/OEJ.20.2.049
  16. D. K. An, S. C. Ho & J. W. Choi. (2019). A Study on Efficient Decision-Making Using Big Data by Managers of Small and Medium Size Enterprises. Korean Review of Corporation Management, 10(3), 311-326.
  17. J. Y. Park & K. I. Kim. (2018). ICT Utilization for Optimization of SME Decision Making. Journal of Convergence for Information Technology, 8(1), 275-280. https://doi.org/10.22156/CS4SMB.2018.8.1.275
  18. D. W. Park & K. Y. Kwahk. (2020). The Effects of Information Systems Based Working Environment on the Performance of SMEs. Korean Management Review, 49(1), 215-249. https://doi.org/10.17287/kmr.2020.49.1.215
  19. Y. Liu, H. F. Liu & J. S. Jung. (2020). Strategies for Improving Export and Distribution of SMEs Using the Platform of the 4th Industrial Revolution Technology: Focusing on the Chinese SMEs. Journal of Distribution and Management Research, 23(6), 31-48.
  20. H. Y. Lee, S. K. Lee & C. J. Suh. (2019). Effects of SST(Self-Service Technology) Service Quality and Perceived Value on Customer Engagement. Journal of Korea Service Management Society, 20(5), 69-92. https://doi.org/10.15706/jksms.2019.20.5.004
  21. Korean Rural Economic Institute. (2021), Report on the status of restrant business management. Naju : Korean Rural Economic Institute.
  22. R. Agrawal, T. Imielinski & A. Swami (1993). Mining association rules between sets of items in large databases. Proceedings of the 1993 ACM SIGMOD Conference Washington DC, USA.
  23. M. J. A. Berry & S. L. Gordon. (2204). Data mining techniques: for marketing, sales and customer relationship management. New York, NY: John Wiley & Sons. Inc.
  24. C. Westphal & T. Blaxton. (1998). Data mining solutions: Methods and tools for solving real-world problems. New York, NY: John Willey & Sons. Inc.
  25. Y. K. Jeong. (2003). A Study on the Analysis of Restaurant Customers' Behavior Patterns Using Association Rules. Korean Journal of Hosipitality & Tourism, 12(2), 1-22.
  26. A. Savasere, E. Omiecinski & S. Navathe. (1995). An efficient algorithm for mining association rules in large databases. Proceedings of 21st International Conference on Very Large Data Bases. (pp. 432-444). San Francisco : Morgan Kaufman Publishers Inc..
  27. A. Paul & M. David. (2015). Data mining for the social sciences: An introduction. Oakland : University of California Press.
  28. K. S. Lee & J. W. Yoon. (2016). Rapid Hybrid Recommender System with Web Log for Outbound Leisure Products. KIISE Transactions on Computing Practices, 22(12), 646-65. DOI : 10.5626/KTCP.2016.22.12.6
  29. E. S. Won & S. Y. Kim. (2020). An Analysis of Consumers Purchasing Patterns for Fresh Food Products Using Association Rules. Journal of Agriculture & Life Science, 54(4), 111-122. DOI : 10.14397/jals.2020.54.4.111
  30. J. Silva, N. Varela, L. Lopez & R. Millan. (2019). Association Rules Extraction for Customer Segmentation in the SMEs Sector Using the Apriori Algorithm. Procedia Computer Science, 151, 1207-1212. DOI : https://doi.org/10.1016/j.procs.2019.04.173
  31. W. Y. Chiang. (2018). Identifying high-value airlines customers for strategies of online marketing systems: An empirical case in Taiwan. Kybernetes, 47(3), 525-538. DOI : 10.1108/K-12-2016-0348
  32. F. Guillet & H. Hamilton. (2007). Quality Measures in Data Mining. Heidelberg : Springer. DOI : 10.1007/978-3-540-44918-8_11
  33. D. W. Lee. (2017). A Regression-Model-based Method for Combining Interestingness Measures of Association Rule Mining. Journal of Intelligence and Information Systems, 23(1), 127-141. https://doi.org/10.13088/JIIS.2017.23.1.127
  34. S. S. Kim. (2021). Association Rules of Comorbidities in Patients Hospitalized for Lung Cancer. Journal of Health Informatics and Statistics, 46(1), 100-109. https://doi.org/10.21032/jhis.2021.46.1.100
  35. M. U. An, E. S. Won, S. Y. Kim & D. H. Yoo. (2019). Development of Sales Strategies for Agricultural Products Using Lift-based Association Rules Network: A Focus on Large Supermarkets and Traditional Markets. The Journal of Internet Electronic Commerce Research, 19(3), 105-127. https://doi.org/10.37272/JIECR.2019.06.19.3.105
  36. S. S. Oh, H. S. Jung & J. Y. Lee. (2019). A Study on the Customer Profile based Item Recommendation System using Association Rules Analysis for Online Duty Free Stores. Korean Journal of Logistics, 27(2), 1-16. https://doi.org/10.15735/KLS.2019.27.2.001
  37. G. Kane, D. Palmer, A. Phillips, D. Kiron & N. Buckley. (2018). Coming of Age Digitally. MIT(Online). https://sloanreview.mit.edu/projects/coming-of-age-digitally/
  38. S. H. Jin & J. H. Choi. (2008). Data Mining Application for Effective Cross Sell Marketing. Journal of Korea Data Analysis Society, 10(5), 2629-2638.
  39. Y. G. Jung, J. K. Park, J. C. Lee & E. Y. Choi. (2012). An Study on the Product Purchase Patterns using Association Rule. Journal of Service Research and Studies, 2(1), 39-46.
  40. H. S. Kim, S. H. Kim & M. C. Ma. (2021). A Recommendation System Based on PNA Collaborative Filtering for Reinforcing Customer Loyalty. Information Systems Review, 23(2), 21-35. https://doi.org/10.14329/isr.2021.23.2.021
  41. S. J. Park, Y. M. Kim & J. J. Ahn. (2019). Development of Product Recommender System using Collaborative Filtering and Stacking Model. Journal of Convergence for Information Technology, 9(6), 83-90. https://doi.org/10.22156/CS4SMB.2019.9.6.083
  42. J. H. Kim, B. H. Ahn & D. Y. Jeong. (2012). A Recommender System using Mixed Filtering for Health Products. The Journal of Internet Electronic Commerce Research, 12(2), 109-124.
  43. D. H. Kim. (2021). Machine learning-based purchase data analysis for implementing digital transformation strategy. Masters dissertation Yonsei University, Seoul.