과제정보
The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups under grant number R.G.P.2/155/43.
참고문헌
- Abid, S.R. (2020), "Temperature variation in steel beams subjected to thermal loads, Steel Compos. Struct., 34(6), 819-835. https://doi.org/10.12989/scs.2020.34.6.819.
- Acar, B. (2019), "Laminar forced convection of various nanofluids in sudden expansion channels under constant heat flux: A CFD study", Int. J. Appl. Mech., 11(5), 1950049. https://doi.org/10.1142/S1758825119500492.
- Ahmad, M., Ahmad, I. and Sajid, M. (2016), "Heat transfer analysis in an axisymmetric stagnation-point flow of second grade fluid over a lubricated surface", Am. J. Heat Mass Transf., 3(1), 1-14. https://doi.org/10.7726/ajhmt.2016.1001.
- Ahmad, M., Jalil, F., Taj, M. and Shehzad, S.A. (2020a), "Lubrication aspects in an axisymmetric magneto nanofluid flow with radiated chemical reaction", Heat Transf., 49(6), 3489-3502. https://doi.org/10.1002/htj.21784.
- Ahmad, M., Sajid, M., Hayat, T. and Ahmad, I. (2015), "On numerical and approximate solutions for stagnation point flow involving third order fluid", AIP Adv., 5(6), 067138. https://doi.org/10.1063/1.4922878.
- Ahmad, M., Shehzad, S.A., Taj, M. and Ramesh, G.K. (2020b), "Magnetized mixed convection second-grade fluid flow adjacent to a lubricated vertical surface", Heat Transf., 49(6), 3958-3978. https://doi.org/10.1002/htj.21817.
- Akbas, S.D. (2020), "Dynamic responses of laminated beams under a moving load in thermal environment", Steel Compos. Struct., 35(6), 729-737. https://doi.org/10.12989/scs.2020.35.6.729.
- AlSaid-Alwan, H.H.S. and Avcar, M. (2020), "Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study", Comput. Concrete, 26(3), 285-292. https://doi.org/10.12989/cac.2020.26.3.285.
- AlSaleh, R.J. and Fuggini, C. (2020), "Combining GPS and accelerometers' records to capture torsional response of cylindrical tower", Smart Struct. Syst., 25(1), 111. https://doi.org/10.12989/sss.2020.25.1.111.
- Bhattacharyya, K., Layek, G.C. and Seth, G.S. (2014), "Soret and Dufour effects on convective heat and mass transfer in stagnation-point flow towards a shrinking surface", Physica Scripta, 89(9), 095203. https://doi.org/10.1088/0031-8949/89/9/095203.
- Buongiorno, J. (2006), "Convective transport in Nanofluids", J. Heat Transf., 128, 240-250. https://doi.org/10.1115/1.2150834.
- Chaudhary, M.A. and Merkin, J.H. (1995), "A simple isothermal model for homogeneous-heterogeneous reactions in boundary-layer flow. I Equal diffusivities", Fluid Dyn. Res., 16(6), 311. https://doi.org/10.1016/0169-5983(95)00015-6.
- Christov, C.I. (2009), "On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction", Mech. Res. Comm., 36(4), 481-486. https://doi.org/10.1016/j.mechrescom.2008.11.003.
- Crane, L.J. (1970), "Flow past a stretching plate", J. Appl. Math. Phys., 21(4), 645-647. https://doi.org/10.1007/BF01587695.
- Daba, M. and Devaraj, P. (2016), "Unsteady boundary layer flow of a Nanofluid over a stretching sheet with variable fluid properties in the presence of thermal radiation", Therm. Phys. Aeromech., 23(3), 403-413. https://doi.org/10.1134/S0869864316030100.
- Dhanawansha, K.B., Senadeera, R., Gunathilake, S.S. and Dassanayake, B.S. (2020), "Silver nanowire-containing wearable thermogenic smart textiles with washing stability", Adv. Nano Res., 9(2), 123-131. https://doi.org/10.12989/anr.2020.9.2.123.
- Durgaprasad, P., Varma, S.V.K., Hoque, M.M. and Raju, C.S.K. (2019), "Combined effects of Brownian motion and thermophoresis parameters on three-dimensional (3D) Casson nanofluid flow across the porous layers slendering sheet in a suspension of graphene nanoparticles", Neural Comput. Appl., 31(10), 6275-6286. https://doi.org/10.1007/s00521-018-3451-z.
- Fallah Najafabadi, M., Talebi Rostami, H., Hosseinzadeh, K. and Domiri Ganji, D. (2021), "Thermal analysis of a moving fin using the radial basis function approximation", Heat Transf., 50(8), 7553-7567. https://doi.org/10.1002/htj.22242.
- Ferdows, M., Khan, M.S., Alam, M.M. and Afify, A.A. (2017), "MHD boundary layer flow and heat transfer characteristics of a nanofluid over a stretching sheet", Acta Universitatis Sapientiae, Mathematica, 9(1), 140-161. https://doi.org/10.1515/ausm.2017.0009.
- Freidoonimehr, N., Rashidi, M.M. and Mahmud, S. (2015), "Unsteady MHD free convective flow past a permeable stretching vertical surface in a nano-fluid", Int. J. Therm. Sci., 87, 136-145. https://doi.org/10.1016/j.ijthermalsci.2014.08.009.
- Ghadikolaei, S.S., Yassari, M., Sadeghi, H., Hosseinzadeh, K. and Ganji, D.D. (2017), "Investigation on thermophysical properties of Tio2-Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow", Powd. Tech., 322, 428-438. https://doi.org/10.1016/j.powtec.2017.09.006.
- Gupta, Y., Rana, P., Beg, O.A. and Kadir, A. (2020), "Multiple solutions for slip effects on dissipative magneto-nanofluid transport phenomena in porous media: stability analysis", J. Appl. Comput. Mech., 6(4), 956-967. http://doi.org/10.22055/JACM.2019.30144.1689.
- Halim, N.A. and Noor, N.F.M. (2015), "Analytical solution for Maxwell nanofluid boundary layer flow over a stretching surface", AIP Conf. Proc., 1682(1), 020006. https://doi.org/10.1063/1.4932415.
- Han, S., Zheng, L., Li, C. and Zhang, X. (2014), "Coupled flow and heat transfer in viscoelastic fluid with Cattaneo-Christov heat flux model", Appl. Math. Lett., 38, 87-93. https://doi.org/10.1016/j.aml.2014.07.013.
- Hayat, T., Anwar, M.S., Farooq, M. and Alsaedi, A. (2014), "MHD stagnation point flow of second grade fluid over a stretching cylinder with heat and mass transfer", Int. J. Nonlin. Sci. Numer. Simul., 15(6), 365-376. https://doi.org/10.1515/ijnsns-2013-0104.
- Hayat, T., Muhammad, T., Alsaedi, A. and Alhuthali, M.S. (2015), "Magneto hydrodynamics three-dimensional flow of viscoelastic nanofluid in the presence of nonlinear thermal radiation", J. Magnetism Magnetic Mater., 385, 222-229. https://doi.org/10.1016/j.jmmm.2015.02.046.
- Hiemenz, K. (1911), "Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder", Dinglers Polytech. J., 326, 321-324. https://lib.ugent.be/catalog/rug01:001856944.
- Hosseinzadeh, K., Mardani, M.R., Salehi, S., Paikar, M. and Ganji, D.D. (2021a), "Investigation of micropolar hybrid nanofluid (Iron oxide-molybdenum disulfide) flow across a sinusoidal cylinder in presence of magnetic field", Int. J. Appl. Comput. Math., 7(5), 1-17. https://doi.org/10.1007/s40819-021-01148-6.
- Hosseinzadeh, K., Mardani, M.R., Salehi, S., Paikar, M., Waqas, M. and Ganji, D.D. (2021b), "Entropy generation of three-dimensional Bodewadt flow of water and hexanol base fluid suspended by Fe3O4 and MoS2 hybrid nanoparticles", Pramana, 95(2), 1-14. https://doi.org/10.1007/s12043-020-02075-9.
- Hosseinzadeh, K., Roghani, S., Mogharrebi, A.R., Asadi, A., Waqas, M. and Ganji, D.D. (2020a), "Investigation of cross-fluid flow containing motile gyrotactic microorganisms and nanoparticles over a three-dimensional cylinder", Alexandria Eng. J., 59(5), 3297-3307. https://doi.org/10.1016/j.aej.2020.04.037.
- Hosseinzadeh, K., Salehi, S., Mardani, M.R., Mahmoudi, F.Y., Waqas, M. and Ganji, D.D. (2020b), "Investigation of nano-Bioconvective fluid motile microorganism and nanoparticle flow by considering MHD and thermal radiation", Inf. Med. Unlock., 21, 100462. https://doi.org/10.1016/j.imu.2020.100462.
- Hosseinzadeh, S., Hosseinzadeh, K., Hasibi, A. and Ganji, D.D. (2022a), "Thermal analysis of moving porous fin wetted by hybrid nanofluid with trapezoidal, concave parabolic and convex cross sections", Case Stud. Therm. Eng., 30, 101757. https://doi.org/10.1016/j.csite.2022.101757.
- Hosseinzadeh, S., Hosseinzadeh, K., Hasibi, A. and Ganji, D.D. (2022b), "Hydrothermal analysis on non-Newtonian nanofluid flow of blood through porous vessels", Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 09544089211069211. https://doi.org/10.1177/09544089211069211.
- Hosseinzadeh, S., Hosseinzadeh, K., Rahai, M. and Ganji, D.D. (2021b), "Analytical solution of nonlinear differential equations two oscillators mechanism using Akbari-Ganji method", Modern Phys. Lett. B, 35(31), 2150462. https://doi.org/10.1142/S0217984921504625.
- Jing, D. and Hatami, M. (2020), "Peristaltic Carreau-Yasuda nanofluid flow and mixed heat transfer analysis in an asymmetric vertical and tapered wavy wall channel", Rep. Mech. Eng., 1(1), 128-140. https://doi.org/10.31181/rme200101128h.
- K Hamzah, H., H Ali, F., Hatami, M. and Jing, D. (2020), "Effect of two baffles on MHD natural convection in U-Shape superposed by solid nanoparticle having different shapes", J. Appl. Comput. Mech., 6, 1200-1209. https://doi.org/10.22055/JACM.2020.33064.2141.
- Khan, W.A. and Pop, I. (2010), "Boundary-layer flow of a nanofluid past a stretching sheet", Int. J. Heat Mass Transf., 53(11-12), 2477-2483. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032.
- Kumari, M. and Nath, G. (1999), "Flow and heat transfer in a stagnation-point flow over a stretching sheet with a magnetic field", Mech. Res. Comm., 26(4), 469-478. https://doi.org/10.1016/S0093-6413(99)00051-8.
- Lata, P., Kaur, I. and Singh, K. (2020), "Transversely isotropic thin circular plate with multi-dual-phase lag heat transfer", Steel Compos. Struct., 35(3), 343-351. https://doi.org/10.12989/scs.2020.35.3.343.
- Lee, S.Y., Huynh, T.C., Dang, N.L. and Kim, J.T. (2019), "Vibration characteristics of caisson breakwater for various waves, sea levels, and foundations", Smart Struct. Syst., 24(4), 525-539. https://doi.org/10.12989/sss.2019.24.4.525.
- Liao, S. (2012), Homotopy Analysis Method in Nonlinear Differential Equations, Beijing: Higher education press.
- Mahapatra, T.R. and Gupta, A.S. (2001), "Magneto hydrodynamics stagnation-point flow towards a stretching sheet", Acta Mech., 152(1-4), 191-196. https://doi.org/10.1007/BF01176953.
- Mahmood, K., Sajid, M., Ali, N. and Javed, T. (2017), "MHD mixed convection stagnation point flow of a viscous fluid over a lubricated vertical surface", Indust. Lubrication Tribology, 69(4), 527-535. https://doi.org/10.1108/ILT-02-2016-0025.
- Mahmoud, M.A. and Waheed, S.E. (2012), "MHD stagnation point flow of a micro polar fluid towards a moving surface with radiation", Meccanica, 47(5), 1119-1130. https://doi.org/10.1007/s11012-011-9498-x.
- Makinde, O.D. and Aziz, A. (2011), "Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition", Int. J. Therm. Sci., 50(7), 1326-1332. https://doi.org/10.1016/j.ijthermalsci.2011.02.019.
- Mijajlovic, M.M., Vidojkovic, S., Ciric, D. and Marinkovic, D. (2020), "Numerical simulation of fluid-structure interaction between fishing wobbler and water", Facta Unversitatis, 18(4), 665-676. https://doi.org/10.22190/FUME200128015M.
- Mogharrebi, A.R., Ganji, A.R.D., Hosseinzadeh, K., Roghani, S., Asadi, A. and Fazlollahtabar, A. (2021), "Investigation of magnetohydrodynamic nanofluid flow contain motile oxytactic microorganisms over rotating cone", Int. J. Numer. Method. Heat Fluid Flow., 31(11), 3394-3412. https://doi.org/10.1108/HFF-08-2020-0493.
- Muhammad, A. and Shahzad, A. (2011), "Radiation effects on MHD boundary layer stagnation point flow towards a heated shrinking sheet", World Appl. Sci. J., 13(7), 1748-1756. https://doi.org/10.1080/00986445.2011.631202.
- Mustafa, T. (2016), "Equivalences and correspondences between the deforming body induced flow and heat in two-three dimensions", Phys. Fluid., 28(4), 043102. https://doi.org/10.1063/1.4945650.
- Mustafaa, M., Hayat, T. and Obaidat, S. (2013), "Boundary layer flow of a nanofluid over an exponentially stretching sheet with convective boundary conditions", Int. J. Numer. Method. Heat Fluid Flow, 23(6), 945-959. https://doi.org/10.1108/HFF-09-2011-0179.
- Na, T.Y. (Ed.) (1980), "Computational methods in engineering boundary value problems", Academic Press.
- Poplawski, B., Mikulowski, G., Pisarski, D., Wiszowaty, R. and Jankowski, L. (2019), "Optimum actuator placement for damping of vibrations using the prestress-Accumulation release control approach", Smart Struct. Syst., 24(1), 27-35. https://doi.org/10.12989/sss.2019.24.1.027.
- Rashidi, M.M., Rostami, B., Freidoonimehr, N. and Abbasbandy, S. (2014), "Free convective heat and mass transfer for MHD fluid flow over a permeable vertical stretching sheet in the presence of the radiation and buoyancy effects", Ain Shams Eng. J., 5(3), 901-912. https://doi.org/10.1016/j.asej.2014.02.007.
- Sajid, M., Ahmad, M., Ahmad, I., Taj, M. and Abbasi, A. (2015), "Axisymmetric stagnation-point flow of a third-grade fluid over a lubricated surface", Adv. Mech. Eng., 7(8), 1-8. https://doi.org/10.1177/1687814015591735.
- Sajid, M., Arshad, A., Javed, T. and Abbas, Z. (2015), "Stagnation point flow of Walters-B fluid using hybrid homotopy analysis method", Arab. J. Sci. Eng., 40(11), 3313-3319. https://doi.org/10.1007/s13369-015-1781-z.
- Sajid, M., Javed, T., Abbas, Z. and Ali, N. (2013), "Stagnation-point flow of a viscoelastic fluid over a lubricated surface", Int. J. Nonlin. Sci. Numer. Simul., 14(5), 285-290. https://doi.org/10.1515/ijnsns-2012-0046.
- Sajid, M., Mahmood, K. and Abbas, Z. (2012), "Axisymmetric stagnation-point flow with a general slip boundary condition over a lubricated surface", Chinese Phys. Lett., 29(2), 024702. https://doi.org/10.1088/0256-307X/29/2/024702.
- Santra, B., Dandapat, B.S. and Andersson, H.I. (2007), "Axisymmetric stagnation-point flow over a lubricated surface", Acta Mechanica, 194(1-4), 1-10. https://doi.org/10.1007/s00707-007-0484-2.
- Sharma, P.R. and Singh, G. (2009), "Effects of variable thermal conductivity and heat source/sink on MHD flow near a stagnation point on a linearly stretching sheet", J. Appl. Fluid Mech., 2(1), 13-21. https://www.sid.ir/en/journal/ViewPaper.aspx?id=125718.
- Sheikholeslami, M. (2018), "CuO-water nanofluid flow due to magnetic field inside a porous media considering Brownian motion", J. Mole. Liquid., 249, 921-929. https://doi.org/10.1016/j.molliq.2017.11.118.
- Sheikholeslami, M., Shehzad, S.A. and Li, Z. (2018), "Water based nanofluid free convection heat transfer in a three dimensional porous cavity with hot sphere obstacle in existence of Lorenz forces", Int. J. Heat Mass Transf., 125, 375-386. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.076.
- Straughan, B. (2008), "Stability and Wave Motion in Porous Media , Springer Science and Business Media.
- Straughan, B. (2010), "Thermal convection with the Cattaneo-Christov model", Int. J. Heat Mass Transf., 53(1-3), 95-98. https://doi.org/10.1016/j.ijheatmasstransfer.2009.10.001.
- TalebiRostami, H., Fallah, M., Hosseinzadeh, K. and Ganji, D.D. (2021), "Investigation of mixture-based dusty hybrid nanofluid flow in porous media affected by magnetic field Using RBF method", Int. J. Ambient Ener., 1-32. https://doi.org/10.1080/01430750.2021.2023041,
- TC, C. (1994), "Stagnation-point flow towards a stretching plate", J. Phys. Soc. Japan, 63(6), 2443-2444. https://doi.org/10.1143/jpsj.63.2443.
- Tohidi, H., Hosseini-Hashemi, S.H. and Maghsoudpour, A. (2018), "Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory", Smart Struct. Syst., 22(5), 527-546. https://doi.org/10.12989/sss.2018.22.5.527.
- White, F.M. and Majdalani, J. (2006), Viscous Fluid Flow, 3, 433-434. McGraw-Hill, NY, USA.
- Yeh, J.Y. (2016), "Vibration characteristic analysis of sandwich cylindrical shells with MR elastomer", Smart Struct. Syst., 18(2), 233-247. https://doi.org/10.12989/sss.2016.18.2.233.
- Zahrai, S.M. and Kakouei, S. (2019), "Shaking table tests on a SDOF structure with cylindrical and rectangular TLDs having rotatable baffles", Smart Struct. Syst., 24(3), 391-401. https://doi.org/10.12989/sss.2019.24.3.391.
- Zhang, J., Ullah, S., Gao, Y., Avcar, M. and Civalek, O . (2020), "Analysis of orthotropic plates by the two-dimensional generalized FIT method", Comput. Concrete, 26(5), 421-427. https://doi.org/10.12989/cac.2020.26.5.421.