DOI QR코드

DOI QR Code

GRADIENT RICCI SOLITONS WITH HALF HARMONIC WEYL CURVATURE AND TWO RICCI EIGENVALUES

  • Kang, Yutae (Department of Mathematics Sogang University) ;
  • Kim, Jongsu (Department of Mathematics Sogang University)
  • 투고 : 2020.11.08
  • 심사 : 2020.11.23
  • 발행 : 2022.04.30

초록

In this article we classify four dimensional gradient Ricci solitons (M, g, f) with half harmonic Weyl curvature and at most two distinct Ricci-eigenvalues at each point. Indeed, we showed that, in a neighborhood V of each point in some open dense subset of M, (V, g) is isometric to one of the following: (i) an Einstein manifold. (ii) a domain in the Riemannian product (ℝ2, g0) × (N, ${\tilde{g}}$), where g0 is the flat metric on ℝ2 and (N, ${\tilde{g}}$) is a two dimensional Riemannian manifold of constant curvature λ ≠ 0. (iii) a domain in ℝ × W with the warped product metric $ds^2+h(s)^2{\tilde{g}}$, where ${\tilde{g}}$ is a constant curved metric on a three dimensional manifold W.

키워드

과제정보

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2020R1A2B5B01001862).

참고문헌

  1. A. L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 10, Springer-Verlag, Berlin, 1987. https://doi.org/10.1007/978-3-540-74311-8
  2. H.-D. Cao and Q. Chen, On locally conformally flat gradient steady Ricci solitons, Trans. Amer. Math. Soc. 364 (2012), no. 5, 2377-2391. https://doi.org/10.1090/S0002-9947-2011-05446-2
  3. H.-D. Cao and Q. Chen, On Bach-flat gradient shrinking Ricci solitons, Duke Math. J. 162 (2013), no. 6, 1149-1169. https://doi.org/10.1215/00127094-2147649
  4. X. Chen and Y. Wang, On four-dimensional anti-self-dual gradient Ricci solitons, J. Geom. Anal. 25 (2015), no. 2, 1335-1343. https://doi.org/10.1007/s12220-014-9471-8
  5. B. Chow, S. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo, and L. Ni, The Ricci flow: techniques and applications. Part I, Mathematical Surveys and Monographs, 135, American Mathematical Society, Providence, RI, 2007. https://doi.org/10.1090/surv/135
  6. A. Derdzi'nski, Classification of certain compact Riemannian manifolds with harmonic curvature and nonparallel Ricci tensor, Math. Z. 172 (1980), no. 3, 273-280. https://doi.org/10.1007/BF01215090
  7. J. Kim, On a classification of 4-d gradient Ricci solitons with harmonic Weyl curvature, J. Geom. Anal. 27 (2017), no. 2, 986-1012. https://doi.org/10.1007/s12220-016-9707-x
  8. J.-Y. Wu, P. Wu, and W. Wylie, Gradient shrinking Ricci solitons of half harmonic Weyl curvature, Calc. Var. Partial Differential Equations 57 (2018), no. 5, Paper No. 141, 15 pp. https://doi.org/10.1007/s00526-018-1415-x