과제정보
This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2020R1A2B5B01001862).
참고문헌
- A. L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 10, Springer-Verlag, Berlin, 1987. https://doi.org/10.1007/978-3-540-74311-8
- H.-D. Cao and Q. Chen, On locally conformally flat gradient steady Ricci solitons, Trans. Amer. Math. Soc. 364 (2012), no. 5, 2377-2391. https://doi.org/10.1090/S0002-9947-2011-05446-2
- H.-D. Cao and Q. Chen, On Bach-flat gradient shrinking Ricci solitons, Duke Math. J. 162 (2013), no. 6, 1149-1169. https://doi.org/10.1215/00127094-2147649
- X. Chen and Y. Wang, On four-dimensional anti-self-dual gradient Ricci solitons, J. Geom. Anal. 25 (2015), no. 2, 1335-1343. https://doi.org/10.1007/s12220-014-9471-8
- B. Chow, S. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo, and L. Ni, The Ricci flow: techniques and applications. Part I, Mathematical Surveys and Monographs, 135, American Mathematical Society, Providence, RI, 2007. https://doi.org/10.1090/surv/135
- A. Derdzi'nski, Classification of certain compact Riemannian manifolds with harmonic curvature and nonparallel Ricci tensor, Math. Z. 172 (1980), no. 3, 273-280. https://doi.org/10.1007/BF01215090
- J. Kim, On a classification of 4-d gradient Ricci solitons with harmonic Weyl curvature, J. Geom. Anal. 27 (2017), no. 2, 986-1012. https://doi.org/10.1007/s12220-016-9707-x
- J.-Y. Wu, P. Wu, and W. Wylie, Gradient shrinking Ricci solitons of half harmonic Weyl curvature, Calc. Var. Partial Differential Equations 57 (2018), no. 5, Paper No. 141, 15 pp. https://doi.org/10.1007/s00526-018-1415-x