DOI QR코드

DOI QR Code

COEFFICIENT ESTIMATES FOR FUNCTIONS ASSOCIATED WITH VERTICAL STRIP DOMAIN

  • Bulut, Serap (Faculty of Aviation and Space Sciences Kocaeli University)
  • Received : 2021.04.20
  • Accepted : 2021.06.25
  • Published : 2022.04.30

Abstract

In this paper, we consider a convex univalent function fα,β which maps the open unit disc 𝕌 onto the vertical strip domain Ωα,β = {w ∈ ℂ : α < ℜ < (w) < β} and introduce new subclasses of both close-to-convex and bi-close-to-convex functions with respect to an odd starlike function associated with Ωα,β. Also, we investigate the Fekete-Szegö type coefficient bounds for functions belonging to these classes.

Keywords

References

  1. P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer-Verlag, New York, 1983.
  2. C. Gao and S. Zhou, On a class of analytic functions related to the starlike functions, Kyungpook Math. J. 45 (2005), no. 1, 123-130.
  3. S. P. Goyal and P. Goswami, On certain properties for a subclass of close-to-convex functions, J. Class. Anal. 1 (2012), no. 2, 103-112. https://doi.org/10.7153/jca-01-11
  4. S. P. Goyal and O. Singh, Certain subclasses of close-to-convex functions, Vietnam J. Math. 42 (2014), no. 1, 53-62. https://doi.org/10.1007/s10013-013-0032-4
  5. F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8-12. https://doi.org/10.2307/2035949
  6. J. Kowalczyk and E. Les-Bomba, On a subclass of close-to-convex functions, Appl. Math. Lett. 23 (2010), no. 10, 1147-1151. https://doi.org/10.1016/j.aml.2010.03.004
  7. K. Kuroki and S. Owa, Notes on new class for certain analytic functions, RIMS Kokyuroku 1772 (2011), 21-25.
  8. M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63-68. https://doi.org/10.2307/2035225
  9. V. Ravichandran, A. Gangadharan, and M. Darus, Fekete-Szego inequality for certain class of Bazilevic functions, Far East J. Math. Sci. (FJMS) 15 (2004), no. 2, 171-180.
  10. W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. (2) 48 (1943), 48-82. https://doi.org/10.1112/plms/s2-48.1.48
  11. B. S,eker and S. S. Eker, On subclasses of bi-close-to-convex functions related to the odd-starlike functions, Palest. J. Math. 6 (2017), Special Issue II, 215-221.
  12. B. A. Uralegaddi, M. D. Ganigi, and S. M. Sarangi, Univalent functions with positive coefficients, Tamkang J. Math. 25 (1994), no. 3, 225-230. https://doi.org/10.5556/j.tkjm.25.1994.4448
  13. Z.-G. Wang and D.-Z. Chen, On a subclass of close-to-convex functions, Hacet. J. Math. Stat. 38 (2009), no. 2, 95-101.
  14. Z. Wang, C. Gao, and S. Yuan, On certain subclass of close-to-convex functions, Acta Math. Acad. Paedagog. Nyhazi. (N.S.) 22 (2006), no. 2, 171-177.
  15. Q.-H. Xu, H. M. Srivastava, and Z. Li, A certain subclass of analytic and close-to-convex functions, Appl. Math. Lett. 24 (2011), no. 3, 396-401. https://doi.org/10.1016/j.aml.2010.10.037
  16. P. Zaprawa, Estimates of initial coefficients for bi-univalent functions, Abstr. Appl. Anal. 2014 (2014), Art. ID 357480, 6 pp. https://doi.org/10.1155/2014/357480