DOI QR코드

DOI QR Code

A FUNDAMENTAL THEOREM OF CALCULUS FOR THE Mα-INTEGRAL

  • Received : 2021.02.04
  • Accepted : 2021.05.17
  • Published : 2022.04.30

Abstract

This paper presents a fundamental theorem of calculus, an integration by parts formula and a version of equiintegrability convergence theorem for the Mα-integral using the Mα-strong Lusin condition. In the convergence theorem, to be able to relax the condition of being point-wise convergent everywhere to point-wise convergent almost everywhere, the uniform Mα-strong Lusin condition was imposed.

Keywords

Acknowledgement

The author would like to thank the referees for carefully reading his manuscript and for the valuable suggestions.

References

  1. R. G. Bartle, A modern Theory of Integration, Graduate Studies in Mathematics, 32, American Mathematical Society, Providence, RI, 2001. https://doi.org/10.1090/gsm/032
  2. B. Bongiorno, L. Di Piazza, and V. Skvortsov, A new full descriptive characterization of Denjoy-Perron integral, Real Anal. Exchange 21 (1995/96), no. 2, 656-663. https://doi.org/10.2307/44152676
  3. I. J. L. Garces and A. P. Racca, Characterizing convergence conditions for the Mαintegral, Chungcheong J. Math. Soc. 24 (2011), no. 3, 469-480.
  4. I. J. L. Garces and A. P. Racca, Cauchy extension of Mα-integral and absolute Mαintegrability, Int. J. Math. Anal. 9(27) (2015), 1323-1329. https://doi.org/10.12988/ijma.2015.5368
  5. P. Y. Lee, Lanzhou Lectures on Henstock Integration, Series in Real Analysis, 2, World Scientific Publishing Co., Inc., Teaneck, NJ, 1989.
  6. P. Y. Lee and R. Vyborny, Integral: an easy approach after Kurzweil and Henstock, Australian Mathematical Society Lecture Series, 14, Cambridge University Press, Cambridge, 2000.
  7. J. M. Park, B. M. Kim, Y. K. Kim, and J. T. Lim, Convergence theorems for the Mα-integral, Chungcheong J. Math. Soc. 24 (2011), no. 2, 383-391.
  8. J. M. Park, D. H. Lee, J. H. Yoon, and H. K. Lee, The integration by parts for the Mα-integral, Chungcheong J. Math. Soc. 23 (2010), no. 4, 861-870.
  9. J. M. Park, H. W. Ryu, and H. K. Lee, The Mα-integral, Chungcheong J. Math. 23 (2010), no. 1, 99-108.
  10. J. M. Park, H. W. Ryu, H. K. Lee, and D. H. Lee, The Mα and C-integrals, Czechoslovak Math. J. 62(137) (2012), no. 4, 869-878. https://doi.org/10.1007/s10587-012-0070-1