DOI QR코드

DOI QR Code

Fabrication of edible gelatin-based films by heat pressing

열 압착을 이용한 가식성 젤라틴 필름 제조

  • Kim, Eui Hyun (Department of Food Science and Technology, Seoul Women's University) ;
  • Song, Ah Young (Department of Food Science and Technology, Seoul Women's University) ;
  • Min, Sea Cheol (Department of Food Science and Technology, Seoul Women's University)
  • 김의현 (서울여자대학교 자연과학대학 식품공학과) ;
  • 송아영 (서울여자대학교 자연과학대학 식품공학과) ;
  • 민세철 (서울여자대학교 자연과학대학 식품공학과)
  • Received : 2022.02.16
  • Accepted : 2022.03.10
  • Published : 2022.04.30

Abstract

In this study, edible films made of fish and mammalian gelatins were produced using heat pressing, and their physical properties were investigated. Transparent and smooth films were formed continuously and uniformly using a mixture of fish skin gelatin (FG) or mammalian gelatin (MG), glycerol, and water under the process of heat pressing at 90℃ and 20 MPa for 5 min. Heat-pressed FG films possessed lower light transmittance and tensile strength than heat-pressed MG films; however, their appearance, surface morphology, water vapor permeability, lightness, and redness were not different from those of heat-pressed MG films. Although heat-pressed FG films had lower tensile strength, they had a flatter and more uniform surfaces and demonstrated higher transparency and moisture barrier properties compared to the casted FG films. These results demonstrate the potential utility of heat pressing for the large-scale production of edible films using both FG and MG.

본 연구에서는 열 압착 공정을 이용하여 생고분자 가식성 FG 필름과 MG 필름을 제작하였고, 제조 공정 차이에 따른 필름의 형성, 표면 미세구조, 그리고 빛 투과도를 비교하기 위해 캐스팅 방법을 이용해서도 FG 필름을 제작하였다. 열 압착을 이용하여 FG와 MG로부터 연속적이고, 균일하며, 투명하고, 그리고 매끄러운 표면을 가진 필름을 제작할 수 있었다. 열 압착된 FG 필름은 열 압착된 MG 필름보다 빛 투과도와 인장 강도가 낮았으나, 육안 관찰 및 현미경을 이용한 표면 미세구조를 관찰 시 큰 차이를 확인할 수 없었으며, 수분 투과도와 필름의 명도 및 붉은 정도에서도 유의적인 차이가 보이지 않았다. 또한, 열 압착된 FG 필름이 캐스팅된 FG 필름보다 육안으로 보았을 때 더욱 투명하고 균일한 표면을 가진 것을 확인할 수 있었고, 투명도도 캐스팅 된 FG 필름보다 높음을 알 수 있었다. 열 압착된 FG 필름이 캐스팅된 FG 필름보다 낮은 인장 강도와 높은 수분 차단 능력을 갖췄다. 열 압착된 FG 필름은 캐스팅된 FG 필름과 색도의 차이가 있었고, 캐스팅된 FG 필름보다 매끄럽고 균일한 표면 미세구조를 가진 것을 알 수 있었다. 본 연구의 결과는 열 압착 공정을 사용하는 산업적 생고분자 생산 시스템을 사용하여 우수한 수분 차단 능력을 갖춘 가식성 필름을 MG과 생선껍질로부터 얻어지는 FG을 이용해 제작할 수 있음을 보여주었다.

Keywords

Acknowledgement

이 논문은 서울여자대학교 학술연구비의 지원에 의한 것임 (2022-0118).

References

  1. ASTM. Standard test method for tensile properties of thin plastic sheeting. D822-01. American Society for Testing and Materials, Philadelphia, PA, USA (1997)
  2. Chiou BS, Avena-Bustillos RJ, Bechtel PJ, Jafri H, Narayan R, Imam SH, Glenn GM, Orts WJ. Cold water fish gelatin films: Effects of cross-linking on thermal, mechanical, barrier, and biodegradation properties. Eur. Polym. J. 44: 3748-3753 (2008) https://doi.org/10.1016/j.eurpolymj.2008.08.011
  3. Chiou BS, Avena-Bustillos RJ, Shey J, Yee E, Bechtel PJ, Imam SH, Glenn GM, Orts WJ. Rheological and mechanical properties of cross-linked fish gelatins. Polymer 47: 6379-6386 (2006) https://doi.org/10.1016/j.polymer.2006.07.004
  4. Chuaynukul K, Nagarajan M, Prodpran T, Benjakul S, Songtipya P, Songtipya L. Comparative characterization of bovine and fish gelatin films fabricated by compression molding and solution casting methods. J. Polym. Environ. 26: 1239-1252 (2018) https://doi.org/10.1007/s10924-017-1030-5
  5. Chuaynuku K, Prodpran T, Benjakul S. Properties of thermo-compression molded bovine and fish gelatin films as influenced by resin preparation condition. Int. Food Res. J. 22: 1095-1102 (2015)
  6. Etxabide A, Uranga J, Guerrero P, De la Caba K. Development of active gelatin films by means of valorisation of food processing waste: A review. Food Hydrocolloids 68: 192-198 (2017) https://doi.org/10.1016/j.foodhyd.2016.08.021
  7. Fang Y, Tung MA, Britt IJ, Yada S, Dalgleish DG. Tensile and barrier properties of edible films made from whey proteins. J. Food Sci. 67: 188-193 (2002) https://doi.org/10.1111/j.1365-2621.2002.tb11381.x
  8. Flores SK, Costa D, Yamashita F, Gerschenson LN, Grossmann MV. Mixture design for evaluation of potassium sorbate and xanthan gum effect on properties of tapioca starch films obtained by extrusion. Mat. Sci. Eng. C-Mater. 30: 196-202 (2010) https://doi.org/10.1016/j.msec.2009.10.001
  9. Gomez-Estaca J, Montero P, Fernandez-Martin F, Gomez-Guillen MC. Physico-chemical and film-forming properties of bovine-hide and tuna-skin gelatin: A comparative study. J. Food Eng. 90: 480-486 (2009) https://doi.org/10.1016/j.jfoodeng.2008.07.022
  10. Hanani ZN, Roos YH, Kerry JP. Use of beef, pork and fish gelatin sources in the manufacture of films and assessment of their composition and mechanical properties. Food Hydrocolloids 29: 144-151 (2012) https://doi.org/10.1016/j.foodhyd.2012.01.015
  11. Hoque MS, Benjakul S, Prodpran T. Effect of heat treatment of filmforming solution on the properties of film from cuttlefish (Sepia pharaonis) skin gelatin. J. Food Eng. 96: 66-73 (2010) https://doi.org/10.1016/j.jfoodeng.2009.06.046
  12. Jongjareonrak A, Benjakul S, Visessanguan W, Prodpran T, Tanaka M. Characterization of edible films from skin gelatin of brownstripe red snapper and bigeye snapper. Food Hydrocolloids 20: 492-501 (2006) https://doi.org/10.1016/j.foodhyd.2005.04.007
  13. Karim AA, Bhat R. Fish gelatin: properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocolloids 23: 563-576 (2009) https://doi.org/10.1016/j.foodhyd.2008.07.002
  14. Kang HJ, Min SC. Potato peel-based biopolymer film development using high-pressure homogenization, irradiation, and ultrasound. LWT-Food Sci. Technol. 43: 903-909 (2010) https://doi.org/10.1016/j.lwt.2010.01.025
  15. Kim D, Min SC. Trout skin gelatin-based edible film development. J. Food Sci. 77: E240-E246 (2012) https://doi.org/10.1111/j.1750-3841.2012.02880.x
  16. Kim SY, Min SC. Development of antimicrobial edible films and coatings: A review. Food Sci. Ind. 50: 37-51 (2017) https://doi.org/10.23093/FSI.2017.50.2.37
  17. Lee HB, Yang HJ, Ahn JB, Lee YS, Min SC. Zizyphus jujube-based edible film development by the depolymerization processes. Korean J. Food. Sci. Technol. 43: 321-328 (2011) https://doi.org/10.9721/KJFST.2011.43.3.321
  18. Liu F, Chiou BS, Avena-Bustillos RJ, Zhang Y, Li Y, McHugh TH, Zhong F. Study of combined effects of glycerol and transglutaminase on properties of gelatin films. Food Hydrocolloids 65: 1-9 (2017) https://doi.org/10.1016/j.foodhyd.2016.10.004
  19. Liu C, Huang J, Zheng X, Liu S, Lu K, Tang K, Liu J. Heat sealable soluble soybean polysaccharide/gelatin blend edible films for food packaging applications. Food Packag. Shelf Life, 24: 100485 (2020) https://doi.org/10.1016/j.fpsl.2020.100485
  20. Liu J, Zhang L, Liu C, Zheng X, Tang K. Tuning structure and properties of gelatin edible films through pullulan dialdehyde crosslinking. LWT-Food Sci. Technol. 138: 110607 (2021) https://doi.org/10.1016/j.lwt.2020.110607
  21. Loo CP, Sarbon NM. Chicken skin gelatin films with tapioca starch. Food Biosci. 35: 100589 (2020) https://doi.org/10.1016/j.fbio.2020.100589
  22. Lopez O, Garcia MA, Villar MA, Gentili A, Rodriguez MS, Albertengo L. Thermo-compression of biodegradable thermoplastic corn starch films containing chitin and chitosan. LWT-Food Sci. Technol. 57: 106-115 (2014) https://doi.org/10.1016/j.lwt.2014.01.024
  23. Lopez D, Marquez A, Gutierrez-Cutino M, Venegas-Yazigi D, Bustos R, Matiacevich S. Edible film with antioxidant capacity based on salmon gelatin and boldine. LWT-Food Sci. Technol. 77: 160-169 (2017) https://doi.org/10.1016/j.lwt.2016.11.039
  24. McHugh TH, Avena-Bustillos R, Krochta JM. Hydrophilic edible films: Modified procedure for water vapor permeability and explanation of thickness effects. J. Food. Sci. 58: 899-903 (1993) https://doi.org/10.1111/j.1365-2621.1993.tb09387.x
  25. Muyonga JH, Cole CGB, Duodu KG. Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus). Food Chem. 86: 325-332 (2004) https://doi.org/10.1016/j.foodchem.2003.09.038
  26. Nuanmano S, Prodpran T, Benjakul S. Potential use of gelatin hydrolysate as plasticizer in fish myofibrillar protein film. Food Hydrocolloids 47: 61-68 (2015) https://doi.org/10.1016/j.foodhyd.2015.01.005
  27. Park JW, Whiteside WS, Cho SY. Mechanical and water vapor barrier properties of extruded and heat-pressed gelatin films. LWTFood Sci. Technol. 41: 692-700 (2008)
  28. Pelissari FM, Yamashita F, Garcia MA, Martino MN, Zaritzky NE, Grossmann MVE. Constrained mixture design applied to the development of cassava starch-chitosan blown films. J. Food Eng. 108: 262-267 (2012) https://doi.org/10.1016/j.jfoodeng.2011.09.004
  29. Ramos M, Valdes A, Beltran A, Garrigos MC. Gelatin-based films and coatings for food packaging applications. Coatings 6: 41 (2016) https://doi.org/10.3390/coatings6040041
  30. Sablani SS, Dasse F, Bastarrachea L, Dhawan S, Hendrix KM, Min SC. Apple peel-based edible film development using a high-pressure homogenization. J. Food Sci. 74: E372-E381 (2009) https://doi.org/10.1111/j.1750-3841.2009.01273.x
  31. Suderman N, Isa MIN, Sarbon NM. The effect of plasticizers on the functional properties of biodegradable gelatin-based film: A review. Food Biosci. 24: 111-119 (2018) https://doi.org/10.1016/j.fbio.2018.06.006
  32. Yang SY, Lee KY, Beak SE, Kim H, Song KB. Antimicrobial activity of gelatin films based on duck feet containing cinnamon leaf oil and their applications in packaging of cherry tomatoes. Food Sci. Biotechnol. 26: 1429-1435 (2017) https://doi.org/10.1007/s10068-017-0175-2