Acknowledgement
This research was supported by the Research Grant of Jeonju University in 2021.
References
- M. Herzenstein, R. ANDREWS, U. Dholakia & E. Lyandres. (2008). The Democratization of Personal Consumer Loans? Determinants of Success in Online Peer-to-peer Lending Communities. University of Delaware.
- R. Iyer, A. Khwaja, E. Luttmer & K. Shue. (2009). Screening in New Credit Markets: Can Individual Lenders Infer Borrower Creditworthiness in Peer-to-Peer Lending? HKS Faculty Research Working Paper Series RWP09-031.
- T. Harris. (2015). Credit Scoring Using the Clustered Support Vector Machine. Expert Systems with Applications, 42(2), 741-750. DOI : 10.1016/j.eswa.2014.08.029.
- J. Galindo & P. Tamayo. (2000). Credit Risk Assessment Using Statistical and Machine Learning: Basic Methodology and Risk Modeling Applications. Computational Economics, 15, 107-143. DOI : 10.1023/A:1008699112516.
- S. Choi & H. Ahn. (2015). Optimized Bankruptcy Prediction through Combining SVM with Fuzzy Theory. Journal of Digital Convergence, 13(3), 155-165. DOI : 10.14400/JDC.2015.13.3.155.
- B. Slavin. (2007). Peer-to-Peer Lending: An Industry Insight. http://www.bradslavin.com
- M. Schreiner. (2000). Credit Scoring for Microfinance: Can It Work? Journal of Microfinance, 2(2), 105-118.
- H. Yum, B. Lee & M. Chae. (2012). From the Wisdom of Crowds to My Own Judgment in Microfinance through Online Peer-to-peer Lending Platforms. Electronic Commerce Research and Applications, 11(5), 469-483. https://doi.org/10.1016/j.elerap.2012.05.003
- R. Gao & J. Feng. (2014). An Overview Study on P2P Lending. International Business Management, 14-18. DOI : 10.3968/%25x.
- E. Lee & B. Lee. (2012). Herding Behavior in Online P2P Lending: An Empirical Investigation. Electronic Commerce Research and Applications, 11(5), 495-503. DOI : 10.1016/j.elerap.2012.02.001.
- M. Lin, N. Prabhala & S. Viswanathan. (2013). Judging Borrowers by the Company They Keep: Friendship Networks and Information Asymmetry in Online Peer-to-peer Lending. Management Science, 59(1), 17-35. DOI : 10.1287/mnsc.1120.1560.
- C. Serrano-Cinca, B. Gutierrez-Nieto & L. Lopez-Palacios. (2015). Determinants of Default in P2P Lending. Plos one. DOI : 10.1371/journal.pone.0139427.
- R. Emekter, Y. Tu, B. Jirasakuldech & M. Lu. (2015). Evaluating Credit Risk and Loan Performance in Online Peer-to-peer Lending. Journal of Applied Economics, 47, 54-70. DOI : 10.1080/00036846.2014.962222.
- G. Weiss, K. Pelger & A. Horsch. (2010). Mitigating Adverse Selection in P2P Lending: Empirical Evidence from Prosper.com. SSRN Electronic Journal. DOI:10.2139/ssrn.1650774.
- R. Ge, J. Feng, B. Gu & P. Zhang. (2017). Predicting and Deterring Default with Social Media Information in Peer-to-Peer Lending. Journal of Management Information Systems, 34, 401-424. DOI : 10.1080/07421222.2017.1334472.
- M. E. Greiner & H. Wang. (2014). Building Consumer-to-consumer Trust in E-finance Marketplaces: An Empirical Analysis. International Journal of Electronic Commerce, 15(2), 105-136. DOI : 10.2753/JEC1086-4415150204.
- D. Yarkowsky. (1995). Unsupervised Word Sense Disambiguation Rivaling Supervised Methods. Proceedings of the 33rd Annual Meeting on Association for Computational Linguistics. DOI : 10.3115/981658.981684.
- B. Maeireizo, D. Litman & R. Hwa. (2004). Co-training for Predicting Emotions with Spoken Dialogue Data. Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics. DOI : 10.3115/1219044.1219072.
- E. Rilof, J. Wiebe & T. Wilson. (2003). Learning Subjective Nouns Using Extraction Pattern Bootstrapping. Proceedings of the Seventh Conference on Computational Natural Language Learning. DOI : 10.3115/1119176.1119180.
- C. Rosenberg, M. Hebert & H. Schneiderman. (2005). Semi-supervised Self-training of Object. 7th IEEE Workshops on Applications of Computer Vision. (pp. 29-36). DOI : 10.1109/ACVMOT.2005.107.
- O. Chapelle, B. Scholkopf & A. Zien. (2006). Semi-Supervised Learning. MA, USA: The MIT Press Cambridge.
- X. Zhu & A. Goldberg. (2009). Introduction to Semi-supervised Learning. Synthesis lectures on artificial intelligence and machine Learning, Morgan & Claypool Publishers. DOI : 10.2200/S00196ED1V01Y200906AIM006.
- K. Weinberger, J. Blitzer & L. Saul. (2006). Distance Metric Learning for Large Margin Nearest Neighbor Classification. Advances in Neural Information Processing Systems, 18, 473-1480.
- J. Suykens & J. Vandewalle. (1999). Least Squares Support Vector Machine Classifiers. Neural Processing Letters, 9(3), 293-300. DOI : 10.1023/A:1018628609742.
- D. Wang, F. Nie & H. Huang. (2014). Large-scale Adaptive Semi-supervised Learning via Unified. Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. (pp. 482-491). DOI : 10.1145/2623330.2623731.
- C. Bishop. (2006). Pattern Recognition and Machine Learning. New York: Springer-Verlag.
- A. E. Khandani, A. J. Kim & A. W. Lo. (2010). Consumer Credit-risk Models via Machine-learning Algorithms. Journal of Banking & Finance, 34(11), 2767-2787. DOI : 10.1016/j.jbankfin.2010.06.001.
- J. Tanha, M. van Someren & H. Afsarmanesh. (2017). Semi-supervised Self-training for Decision Tree Classifiers. International Journal of Machine Learning and Cybernetics, 8, 355-370. DOI : 10.1007/s13042-015-0328-7.
- F. J. Costello & K. C. Lee. (2019). Exploring the Performance of Synthetic Minority Over-sampling Technique (SMOTE) to Predict Good Borrowers in P2P Lending. Journal of Digital Convergence, 17(9), 71-78. DOI : 10.14400/JDC.2019.17.9.071.