DOI QR코드

DOI QR Code

텍스트 마이닝을 활용한 데이터 거버넌스 연구 동향 분석: 2009년~2021년 국내 학술지 논문을 중심으로

The Study on Data Governance Research Trends Based on Text Mining: Based on the publication of Korean academic journals from 2009 to 2021

  • 정선경 (서울대학교 대학혁신센터)
  • 투고 : 2021.11.23
  • 심사 : 2022.04.20
  • 발행 : 2022.04.28

초록

연구 목적은 데이터 거버넌스의 연구 동향을 파악하고자 하였다. 연구 대상은 데이터 거버넌스 개념과 전략이 제시되기 시작한 2009년부터 2021년까지의 논문 158편을 대상으로 하였다. 주요 연구방법은 텍스트 마이닝을 활용하였고, 주요 방법은 빈도분석, 워트클라우드, 네트워크 분석 및 토픽 모델링 기법을 사용하여 분석하였다. 연구 결과 최빈 키워드는 정보, 빅데이터, 관리, 정책, 정부, 법률, 스마트가 확인되었다. 또한 네트워크 분석 결과 데이터 산업 정책, 데이터 거버넌스 성과, 국방, 거버넌스, 데이터 공공 등의 주제로 연관된 연구 수행이 이루어지고 있었다. 토픽 모델링을 통해 도출된 4개 토픽은 "데이터 거버넌스 정책", "데이터 거버넌스 플랫폼", "데이터 거버넌스 관련 법률", "데이터 거버넌스 구현"이며, 이중 "데이터 거버넌스 플랫폼" 관련 연구는 증가 추세를 보였고, "데이터 거버넌스 구현"은 축소되고 있는 경향이었다. 본 연구는 데이터 거버넌스 관련 연구를 종합적으로 정리하였다. 데이터 거버넌스는 조직 차원의 데이터 경영 및 데이터 통합 정책, 관련 기술 등 관련 분야와 다양한 시각에서 연구영역 확대가 필요하다. 향후 해외데이터 거버넌스들을 대상으로 한 분석 대상을 확대하고 4차산업혁명, 인공지능, 메타버스 등 데이터 기반 미래 산업이 요구되는 산업 분야에서의 연구 방향과 정책 방향 수립 관련 후속 연구를 기대할 수 있다.

As a result of the study, the poorest keywords were information, big data, management, policy, government, law, and smart. In addition, as a result of network analysis, related research was being conducted on topics such as data industry policy, data governance performance, defense, governance, and data public. The four topics derived through topic modeling were "DG policy," "DG platform," "DG in laws," and "DG implementation," of which research related to "DG platform" showed an increasing trend, and "DG implementation" tended to shrink. This study comprehensively summarized data governance-related studies. Data governance needs to expand research areas from various perspectives and related fields such as data management and data integration policies at the organizational level, and related technologies. In the future, we can expand the analysis targets for overseas data governance and expect follow-up studies on research directions and policy directions in industries that require data-based future industries such as Industry 4.0, artificial intelligence, and Metaverse.

키워드

참고문헌

  1. J. K. Kim. (2018). System approval of the agenda in Germany, Administrative Procedures Act and its implications. Korea Legislation Research Institute, 39-69. DOI: 10.22851/kjlr.2018..54.002
  2. M. H. Lee. (2019). Digital transformation, when data-driven integrated policy design is needed. Science and Technology Policy Institute, 18-19.
  3. OECD(2018), OECD Science, Technology and Innovation Outlook 2018.
  4. S. Cho, T. Chung. S. Ahn., C Park & H Kim. (2008). A Study on CIO Centered IT Governance for Strategic Management. Korea Information Processing Society, 15(1), 863-866.
  5. S. P. Yoon & H. Y. Kwon. (2021). Analysis of the Global Data Law & Policy and its Implications: Focusing on the cases of the United States, the United Kingdom, and the European Union. Informatization Policy, 28(2), 98-113. https://doi.org/10.22693/NIAIP.2021.28.2.098
  6. Ministry of the interior and safety of the republic of korea. (2020). Digital government innovation development plan in the post-COVID-19. https://www.innogov.go.kr/ucms/bbs/B0000051/view.do?nttId=4088&menuNo=300145&pageIndex=1
  7. Y. Lee, W Park, D Shin & Y. Won(2019). A Study on Data Governance Maturity Model and Total Process for the Personal Data Use and Protection. Journal of The Korea Institute of Information Security & Cryptology, 29(5).
  8. J. J. Choi, C. S. Kim(2020). A Development of The Staged Framework for University IT Governance. KIPS Trans. Softw. and Data Eng. 8(8), 323-330. https://doi.org/10.3745/KTSDE.2019.8.8.323
  9. J. Choi, J. Park, M. Kim. (2021). Analysis of Research Trends Related to Diagnosis of ASD Through Keyword Network Analysis: Focusing on domestic academic journals published from 2011-2020. Korean Association for Applied Behavior Analysis, 8(1) 115-135.
  10. D. Y. Park, D. H. KIm & K. W. Kim. (2021). Topic Modeling-Based Domestic and Foreign Public Data Research Trends Comparative Analysis. Journal of Digital Convergence, 19(2) 1-12. https://doi.org/10.14400/JDC.2021.19.2.001
  11. J. E. Kim. (2020). Digital New Deal Key Contents and Future Challenges. Korea information processing society review, 27(2).
  12. S. Soares. (2010). The IBM Data Governance Unified Process. Boise: MC Press.
  13. S. S. Kim. (2011). A Case Study of Implementation Data Governance for Enterprise Architecture. Journal of Information Technology and Architecture, 8(3), 255-265.
  14. J. Ladley. (2012). Data Governance: How to Design, Deploy, and Sustain an Effective Data Governance Program. MA: Morgan Kaufmann Publishers.
  15. NIA. (2013). How to secure public information reliability: Focusing on government data governance. http://library.nia.or.kr/dl_image/IMG/01//00000 0000649/SERVICE/000000000649_01.PDF
  16. J. H. Eom. (2020). A Public Legal Review of Big Data Governance in COVID-19. National Public law Review, 16(2), 1-23. https://doi.org/10.46751/nplak.2020.16.2.69
  17. H. S. Son. (2021). A Study on Governance of Intelligent Information Society by Digital Transformation. Public Law, 49(3), 199-230. https://doi.org/10.38176/PublicLaw.2021.02.49.3.199
  18. G. Y. RHEE., S. C. Park. & S. Y. Ryoo. (2020). Performance Measurement Model for Open Big Data Platform. Knowledge Management Research, 243-263.
  19. G. Y. Park & H. J. An. (2019). The Topic Modeling Analysis of The DMZ Tour Issues Using Text Mining. Journal of Tourism and Leisure Research, 31(4), 143-159. DOI: 10.31336/JTLR.2019.4.31.4.143
  20. S. S. Lee. (2014). A Content Analysis of Journal Articles Using the Language Network Analysis Methods. Journal of the Korean Society for Information Management, 31(4), 49-68. DOI: 10.3743/kosim.2014.31.4.049
  21. Science and Technology Policy Institute. (2017). Innovation Studies in Korea: Achievements and Challenges. Sejong: Science and Technology Policy Institute.
  22. M. Song. (2017). Text Mining. Seoul: CRbooks.
  23. H. J. Jung. (2016). Research Dynamics in Innovation Studies Using Text Mining. Journal of Technology Innovation, 24(4), 249-275. DOI: 10.14383/SIME.2016.24.4.249
  24. S. H. Noh. (2020). Analysis of Issues Related to Artificial Intelligence Based on Topic Modeling. The Society of Digital Policy & Management, 18(5), 75-87.
  25. S. C. Choi. & H. W. Park. (2020). A Study on the Trend of Topic Modeling in South Korea using KCI Journal Publications. Journal of The Korean Data Analysis Society, 22(2), 815-826. https://doi.org/10.37727/jkdas.2020.22.2.815
  26. C. W. Woo. & J. Y. Lee. (2020). Investigation of Research Topic and Trends of National ICT Research-Development Using the LDA Model. Journal of the Korea Convergence Society, 11(7), 9-18. https://doi.org/10.15207/JKCS.2020.11.7.009
  27. M. S. Yang. & S. H. Lee & K. H. Park. & K. N. Choi. & T. H. Kim. (2021). A Study on Analysis of national R&D research trends for Artificial Intelligence using LDA topic modeling. Journal of Internet Computing and Services (JICS), 22(5), 47-55. https://doi.org/10.7472/JKSII.2021.22.5.47
  28. W. L. Lee. (2020). A Study on Word Cloud Techniques for Analysis of Unstructured Text Data. The journal of Convergence on Culture Technology (JCCT), 6(4), 715-720. https://doi.org/10.17703/JCCT.2020.6.4.715
  29. S. Y Yoo. & G. G. Lim. (2021) Analysis of News Agenda Using Text mining and Semantic Network Analysis: Focused on COVID-19 Emotions. Journal of Intelligence and Information Systems (JIIS), 27(1), 47-64. https://doi.org/10.13088/JIIS.2021.27.1.047
  30. S. I. Hwang. & M. K. Kim. (2019). An Analysis of Artificial Intelligence(A.I.): related Studies' Trends in Korea Focused on Topic Modeling and Semantic Network Analysis. Journal of Digital Contents Society, 20(9), 1847-1855. https://doi.org/10.9728/dcs.2019.20.9.1847