Acknowledgement
We wish to express our deepest gratitude to our colleagues, students, collaborators and friends, who have direct or indirect contributions in the process of this paper.
References
- A. Ben-Isreal and B. Mond, What is invexity? J. Austral Math. Soc. Ser. B, 28(1) (1986), 1-9. https://doi.org/10.1017/S0334270000005142
- L.M. Bregman, The relaxation method for finding common points of convex sets and its application to the solution of problems in convex programming, USSR Comput. Math. Math. Phys., 7 (1967), 200-217. https://doi.org/10.1016/0041-5553(67)90040-7
- G. Cristescu and L. Lupsa, Non-Connected Convexities and Applications, Kluwer Academic Publisher, Dordrechet, 2002.
- R. Glowinski, J.L. Lions and R. Tremolieres, Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam, 1981.
- L.O. Jolaoso, M. Aphane and S.H. Khan, Two Bregman projection methods for solving variational inequality problems in Hilbert spaces with applications to signal processing, Symmetry, 12 (2020); doi:10.3390/sym12122007.
- S.A. Khan and F. Suhel, Vector variational-like inequalities with pseudo semi-monotone mappings, Nonlinear Funct. Anal. Appl., 16(2) (2011), 191-200.
- J.L. Lions and G. Stampacchia, Variational inequalities, Commun. Pure Appl. Math., 20 (1967), 493-519, https://doi.org/10.1002/cpa.3160200302
- C.P. Niculescu and L.E. Persson, Convex Functions and Their Applications, Springer-Verlag, New York, 2018.
- M.A. Noor. On Variational Inequalities, PhD Thesis, Brunel University, London, U. K., 1975.
- M.A. Noor, Variational-like inequalities, Optimization, 30 (1994), 323-333. https://doi.org/10.1080/02331939408843995
- M.A. Noor, New approximation schemes for generalvariational inequalities, J. Math. Anal. Appl., 151 (2000), 217-229. https://doi.org/10.1006/jmaa.2000.7042
- M.A. Noor, Some developments in general variational inequalities, Appl. Math. Comput., 251 (2004), 199-277. https://doi.org/10.1016/S0096-3003(03)00558-7
- M.A. Noor, Invex equilibrium problems, J. Math. Anal. Appl., 302 (2005), 463-475. https://doi.org/10.1016/j.jmaa.2004.08.014
- M.A. Noor, Fundamentals of equilibrium problems, Math. Inequal. Appl., 9(3) (2006), 529-566.
- M.A. Noor, K.I. Noor and E. Al-Said, Auxiliary Principle Technique for Solving Bifunction Variational Inequalities, J. Optim. Theory Appl., 149 (2011), 441-445. https://doi.org/10.1007/s10957-010-9785-z
- M.A. Noor, K.I. Noor and Th.M. Rassias, New trends in general variational inequalities, Acta Appl. Math., 170(1) (2020), 981-1046. https://doi.org/10.1007/s10440-020-00366-2
- M.A, Noor and K.I. Noor, Higher order strongly general convex functions and variational inequalities, AIMS Math., 5(4) (2020), 3646-3663. https://doi.org/10.3934/math.2020236
- M.A, Noor and K.I. Noor, General biconvex functions and bivariational inequalities, Numer. Algebr. Contro, Optim., 12 (2022): doi: 10.3934/naco.2021041.
- M.A. Noor and K.I. Noor, Higher order strongly biconvex functions and biequilibrium problems, Adv. Lin. Algeb, Matrix Theory, 11 (2021), 31-53. https://doi.org/10.4236/alamt.2021.112004
- M.A. Noor and K.I. Noor, Strongly general bivariational inequalities, Trans. J. Math. Mech., 13(102) (2021), 45-58.
- M.A. Noor, K.I. Noor and Th.M. Rassias, Some aspects of variational inequalities, J. Appl. Math. Comput., 47 (1993), 485-512.
- J. Pecaric, F. Proschan and Y.L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, New York, 1992.
- G. Stampacchia, Formes bilineaires coercivites sur les ensembles convexes, C. R. Acad. Paris, 258 (1964), 4413-4416.
- P. Sunthrayuth and P. Cholamjiak, Modified extragradient method with Bregman distance for variational inequalities, Appl. Anal., 2020, doi.org/10.1080/00036811.2020.1757078.
- H. Yu, S. Wu and C.Y. Jung, Solvability of a system of generalized nonlinear mixed variational-like inequalities, Nonlinear Funct. Anal. Appl., 23(1) (2018), 181-203. https://doi.org/10.22771/NFAA.2018.23.01.14
- D.L. Zhu and P. Marcotte, Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities, SIAM J. Optim., 6 (1996), 714-726. https://doi.org/10.1137/S1052623494250415