DOI QR코드

DOI QR Code

Structural detection of variation in Poisson's ratio: Monitoring system for zigzag double walled carbon nanotubes

  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Asghar, Sehar (Department of Mathematics, Govt. College University Faisalabad) ;
  • Ayed, Hamdi (Department of Civil Engineering, College of Engineering, King Khalid University) ;
  • Khadimallah, Mohamed A. (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Alshoaibi, Adil (Department of Physics, College of Science, King Faisal University) ;
  • Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2021.09.12
  • Accepted : 2022.01.04
  • Published : 2022.04.25

Abstract

In this paper, natural frequency curves are presented for three specific end supports considering distinct values of nonlocal parameter. The vibrational behavior of zigzag double walled carbon nanotubes is investigated using wave propagation with nonlocal effect. Frequency spectra of zigzag (12, 0) double walled carbon nanotubes have been analyzed with proposed model. Effects of nonlocal parameters have been fully investigated on the natural frequency against against variation of Poisson's ratio. A slow increase in frequencies against variation of Poisson's ratio also indicates insensitivity of it for suggested nonlocal model. Moreover, decrease in frequencies with increase in nonlocal parameter authenticates the applicability of nonlocal Love shell model. Also the frequency curves for C-F are lower throughout the computation than that of C-C curves.

Keywords

Acknowledgement

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups under grant number R.G.P.2/2/43.

References

  1. Abouelregal, A.E., Mohammad-Sedighi, H., Faghidian, S.A. and Shirazi, A.H. (2021), "Temperature-dependent physical characteristics of the rotating nonlocal nanobeams subject to a varying heat source and a dynamic load", Facta Universitatis, Series: Mech. Eng., 19(4), 633-656. https://doi.org/10.22190/FUME201222024A.
  2. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  3. Alibeigloo, A. and Shaban, M. (2013), "Free vibration analysis of carbon nanotubes by using three-dimensional theory of elasticity", Acta Mech., 224(7), 1415-1427. https://doi.org/10.1007/s00707-013-0817-2.
  4. Ansari, R. and Arash, B. (2013), "Nonlocal Flugge shell model for vibrations of double-walled carbon nanotubes with different boundary conditions", J. Appl. Mech., 80(2), 021006. https://doi.org/10.1115/1.4007432
  5. Ayat, H., Kellouche, Y., Ghrici, M. and Boukhatem, B. (2018), "Compressive strength prediction of limestone filler concrete using artificial neural networks", Adv. Comput. Des., 3(3), 289-302. https://doi.org/10.1155/2016/7648467.
  6. Azizkhani, M., Kadkhodapour, J., Anaraki, A.P., Hadavand, B.S. and Kolahchi, R. (2020), "Study of body movement monitoring utilizing nano-composite strain sensors contaning Carbon nanotubes and silicone rubber", Steel Compos. Struct., 35(6), 779-788. https://doi.org/10.12989/scs.2020.35.6.779.
  7. Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.
  8. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-ghmady, K. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443.
  9. Blevins, R.D. (1979), Formulas for Natural Frequency and Mode Shape, Van Nostrand Reinhold, New York, U.S.A.
  10. Bocko, J. and Lengvarsky, P. (2014), "Vibration of single-walled carbon nanotubes by using nonlocal theory", Am. J. Mech. Eng., 2(7), 195-198. https://doi.org/10.12691/ajme-2-7-5.
  11. Bouhlali, M., Chikh, A., Bouremana, M., Kaci, A., Bourada, F., Belakhdar, K. and Tounsi, A. (2019), "Nonlinear thermoelastic analysis of FGM thick plates", Coupled Syst. Mech., 8(5), 439-457. https://doi.org/10.12989/acd.2017.2.3.165.
  12. Civalek, O., Demir, C. and Akgoz, B. (2009), "Static analysis of single-walled carbon nanotubes (SWCNT) based on Eringen's nonlocal elasticity theory", Int. J. Eng. Appl. Sci., 1(2), 47-56.
  13. Das, S.L., Mandal, T. and Gupta, S.S. (2013), "Inextensional vibration of zig-zag single-walled carbon nanotubes using nonlocal elasticity theories", Int. J. Solids Struct., 50(18), 2792-2797. https://doi.org/10.1016/j.ijsolstr.2013.04.019.
  14. Demir, C . and Civalek, O. (2016), "Nonlocal finite element formulation for vibration", Int. J. Eng. Appl. Sci., 8(2), 109-117. https://doi.org/10.1155/2020/8786373.
  15. Demir, E., Callioglu, H., Sayer, M. and Kavla, F. (2020), "Effect of chitosan/carbon nanotube fillers on vibration behaviors of drilled composite plates", Steel Compos. Struct., 35(6), 789-798. https://doi.org/10.12989/scs.2020.35.6.789.
  16. Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme", Adv. Nano Res., 7(2), 135-143. https://doi.org/10.12989/anr.2019.7.2.135.
  17. Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039.
  18. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface-waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803.
  19. Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer-Verlag, Berlin, Germany.
  20. Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
  21. Faleh, N.M., Fenjan, R.M. and Ahmed, R.A. (2020), "Forced vibrations of multi-phase crystalline porous shells based on strain gradient elasticity and pulse load effects", J. Vib. Eng. Technol., 8(6), 925-933. https://doi.org/10.1007/s42417-020-00203-8.
  22. Farokhian, A. and Salmani-Tehrani, M. (2020), "Surface and small scale effects on the dynamic buckling of carbon nanotubes with smart layers assuming structural damping", Steel Compos. Struct., 37(2), 229-251. https://doi.org/10.12989/scs.2020.37.2.229.
  23. Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2019a), "Investigating dynamic stability of metal foam nanoplates under periodic in-plane loads via a three-unknown plate theory", Adv. Aircr. Spacecr. Sci., 6(4), 297-314. https://doi.org/10.12989/aas.2019.6.4.297.
  24. Fenjan, R.M., Ahmed, R.A., Alasadi, A.A. and Faleh, N.M. (2019b), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities", Coupled Syst. Mech., 8(3), 247-257. https://doi.org/10.12989/csm.2019.8.3.247.
  25. Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020a), "Nonlinear vibration characteristics of refined higher-order multi-phase piezo-magnetic nanobeams", Eur. Phys. J. Plus, 135(5), 1-14. https://doi.org/10.1140/epjp/s13360-020-00399-4.
  26. Fenjan, R.M., Faleh, N.M. and Ahmed, R.A. (2020b), "Geometrical imperfection and thermal effects on nonlinear stability of microbeams made of graphene-reinforced nano-composites", Adv. Nano Res., 9(3), 147-156. https://doi.org/10.12989/anr.2020.9.3.147.
  27. Fenjan, R.M., Faleh, N.M. and Ridha, A.A. (2020c), "Strain gradient based static stability analysis of composite crystalline shell structures having porosities", Steel Compos. Struct., 36(6), 631-642. https://doi.org/10.12989/scs.2020.36.6.631.
  28. Fleck, N.A. and Hutchinson, J.W. (1993), "A phenomenological theory for strain gradient effects in plasticity", J. Mech. Phys. Solids, 41(12), 1825-1857. https://doi.org/10.1016/0022-5096(93)90072-N.
  29. Gupta, S.S., Bosco, F.G. and Batra, R.C. (2010), "Wall thickness and elastic moduli of single-walled carbon nanotubes from frequencies of axial, torsional and inextensional modes of vibration", Computat. Mater. Sci., 47(4), 1049-1059. https://doi.org/10.1016/j.commatsci.2009.12.007.
  30. Hu, Y.G., Liew, K.M. and Wang, Q. (2012), "Modeling of vibrations of carbon nanotubes", Procedia Eng., 31, 343-347. https://doi.org/10.1016/j.proeng.2012.01.1034.
  31. Jorio, A. Saito, R., Hafner, J.H., Lieber, C.M., Hunter, M., McClure, T., Dresselhaus, G., Dresselhaus, M.S., (2001), "Structural (n,m) determination of isolated single-wall carbon nanotubes by Resonant Raman scattering", Phys. Rev. Lett., 86(6), 1118-1121. https://doi.org/10.1103/PhysRevLett.86.1118.
  32. Karami, B., Shahsavari, D. Janghorban, M., Dimitri, R. and Tornabene, F. (2019), "Wave propagation of porous nanoshells", Nanomaterials, 9(1), 22. https://doi.org/10.3390/nano9010022.
  33. Koochi, A. and Goharimanesh, M. (2021), "Nonlinear oscillations of cnt nano-resonator based on nonlocal elasticity: The energy balance method", Reports Mech. Eng., 2(1), 41-50. https://doi.org/10.31181/rme200102041g.
  34. Malekzadeh, P. and Heydarpour, Y. (2012), "Free vibration analysis of rotating functionally graded cylindrical shells in thermal environment", Compos. Struct., 94(9), 2971-2981. https://doi.org/10.1016/j.compstruct.2012.04.011.
  35. Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couplestresses in linear elasticity", Arch. Ration. Mech. Anal., 11, 415-448. https://doi.org/10.1007/BF00253946
  36. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020), "Nonlinear forced vibrations of multi-scale epoxy/CNT/fiberglass truncated conical shells and annular plates via 3D Mori-Tanaka scheme", Steel Compos. Struct., 35(6), 765-777. https://doi.org/10.12989/scs.2020.35.6.765.
  37. Muhammad, A.K., Hamad, L.B., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing large-amplitude vibration of nonlocal beams made of different piezo-electric materials in thermal environment", Adv. Mater. Res., 8(3), 237-257. https://doi.org/10.12989/amr.2019.8.3.237.
  38. Murmu, T. and Pradhan, S.C. (2009), "Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM", Physica E, 41(7), 1232-1239. https://doi.org/10.1016/j.physe.2009.02.004.
  39. Narendar, S. and Gopalakrishnan, S. (2011), "Nonlocal wave propagation in rotating nanotube", Results Phys., 1(1), 17-25. https://doi.org/10.1016/j.rinp.2011.06.002.
  40. Ouakad, H.M., Sedighi, H.M. and Al-Qahtani, H.M. (2020a), "Forward and backward whirling of a spinning nanotube nano-rotor assuming gyroscopic effects", Adv. Nano Res., 8(3), 245-254. https://doi.org/10.12989/anr.2020.8.3.245.
  41. Ouakad, H.M., Valipour, A., Zur, K.K., Sedighi, H.M. and Reddy, J.N. (2020b), "On the nonlinear vibration and static deflection problems of actuated hybrid nanotubes based on the stress-driven nonlocal integral elasticity", Mech. Mater., 148, 103532. https://doi.org/10.1016/j.mechmat.2020.103532.
  42. Rakrak, K., Zidour, M., Heireche, H., Bousahla, A. A. and Chemi, A. (2016), "Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory", Adv. Nano Res, 4(1), 31-44. http://doi.org/10.12989/anr.2016.4.1.031.
  43. Reddy, J.N. and Pang, S.D. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103(2), 023511. https://doi.org/10.1063/1.2833431.
  44. Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004.
  45. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265.
  46. Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805.
  47. Sedighi, H.M. (2020), "Divergence and flutter instability of magneto-thermo-elastic C-BN hetero-nanotubes conveying fluid", Acta Mechanica Sinica, 36(2), 381-396. https://doi.org/10.1007/s10409-019-00924-4.
  48. Sedighi, H.M. and Daneshmand, F. (2014), "Static and dynamic pull-in instability of multi-walled carbon nanotube probes by He's iteration perturbation method", J. Mech. Sci. Technol., 28(9), 3459-3469. https://doi.org/10.1007/s12206-014-0807-x.
  49. Sedighi, H.M. and Malikan, M. (2020), "Stress-driven nonlocal elasticity for nonlinear vibration characteristics of carbon/boron-nitride hetero-nanotube subject to magneto-thermal environment", Physica Scripta, 95(5), 055218. https://doi.org/10.1088/1402-4896/ab7a38
  50. Sedighi, H.M., Ouakad, H.M., Dimitri, R. and Tornabene, F. (2020), "Stress-driven nonlocal elasticity for the instability analysis of fluid-conveying C-BN hybrid-nanotube in a magneto-thermal environment", Physica Scripta, 95(6), 065204. https://doi.org/10.1088/1402-4896/ab793f
  51. Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337.
  52. Soltani, P., Kassaei, A., Taherian, M.M. and Farshidianfar, A, (2012), "Vibration of wavy single-walled carbon nanotubes based on nonlocal Euler Bernoulli and Timoshenko models", Int. J. Adv. Struct. Eng., 4(1), 3. https://doi.org/10.1186/2008-6695-4-3.
  53. Soltani, P., Saberian, J. and Bahramian, R. (2016), "Nonlinear vibration analysis of single-walled carbon nanotube with shell model based on the nonlocal elasticity theory", J. Computat. Nonlinear Dyn., 11(1), 011002. https://doi.org/10.1115/1.4030753.
  54. Swain, A., Roy, T. and Nanda, B.K. (2013), "Vibration behavior of single-walled carbon nanotube using finite element", Int. J. Theor. Appl. Res. Mech, Eng., 2, 129-133A.
  55. Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135.
  56. Toupin, R.A. (1964), "Theory of elasticity with couple stresses", Arch. Ration. Mech. Anal., 17, 85-112. https://doi.org/10.1007/BF00253050.
  57. Tserpes, K.I. and Papanikos, P. (2005), "Finite element modeling of single-walled carbon nanotubes", Compos. Part B Eng., 36(5), 468-477. https://doi.org/10.1016/j.compositesb.2004.10.003.
  58. Yang, J., Ke, L.L. and Kitipornchai, S. (2010), "Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", Physica E, 42(5), 1727-1735. https://doi.org/10.1016/j.physe.2010.01.035.
  59. Yayli, M.O. (2013), "Torsion of nonlocal bars with equilateral triangle cross sections", J. Computat. Theor. Nanosci., 10(2), 376-379. https://doi.org/10.1166/jctn.2013.2707
  60. Zhang, X.M., Liu, G.R. and Lam, K.Y. (2001), "Vibration analysis of thin cylindrical shells using wave propagation approach", J. Sound Vib., 239, 397-403. https://doi.org/10.1006/jsvi.2000.3139.
  61. Zhang, Y.Y., Wang, C.M. and Tan, V.B.C. (2009), "Assessment of Timoshenko beam models for vibrational behavior of single-walled carbon nanotubes using molecular dynamics", Adv. Appl. Math. Mech., 1(1), 89-106.