참고문헌
- Agrawal, S., Parveen A. and Azam A. (2016), "Structural, electrical, and optomagnetic tweaking of Zn doped CoFe2-xZnxO4 nanoparticles", J. Magn. Magn. Mater., 414, 114-152. https://doi.org/10.1016/j.jmmm.2016.04.059.
- Arora, C., Soni, S., Sahu, S., Mittal, J., Kumar, P., Bajpai, P.K. (2019), "Iron based metal organic framework for efficient removal of methylene blue dye from industrial waste", J. Mol. Liq., 284, 343-352. https://doi.org/10.1016/j.molliq.2019.04.012.
- Asghar, G., Rehman, M.A. (2012), "Structural, dielectric and magnetic properties of Cr-Zn doped strontium hexa-ferrites for high frequency applications", J. Alloys Compd., 526, 85-90. http://doi.org/10.1016/j.jallcom.2012.02.086.
- Atif, M. and Nadeem, M. (2014), "Sol-gel synthesis of nanocrystalline Zn1-xNixFe2O4 ceramics and its structural, magnetic and dielectric properties", J. Sol-Gel Sci. Technol., 72(3), 615-626. https://doi.org/10.1007/s10971-014-3484-4.
- Balgude, S., Barkade, S. and Mardikar, S. (2020), Metal Oxides for High-Performance Hydrogen Generation by Water Splitting in Multifunctional Nanostructured Metal Oxides for Energy Harvesting and Storage Devices, CRC press, Florida, U.S.A. https://doi.org/10.1201/9780429296871-6.
- Balgude, S., Sethi, Y., Gaikwad, A., Kale, B., Amalnerkar, D. and Adhyapak, P. (2020), "Unique N doped Sn3O4 nanosheets as an efficient and stable photocatalyst for hydrogen generation under sunlight", Nanoscale, 12(15), 8502-8510. https://doi.org/10.1039/C9NR10439A.
- Bera, S., Prince, A.A.M., Velmurugan, S., Raghavan, P.S., Gopalan, R., Panneerselvam, G., Narasimhan, S.V. (2001), "Formation of zinc ferrite by solid state reaction and its characterization by XRD and XPS", J. Mater. Sci., 36(22), 5379-5384. https://doi.org/10.1023/A:1012488422484.
- Bhalla, N., Taneja, S., Thakur, P., Sharma, P.K., Mariotti, D., Maddi, C., Ivanova, O., Petrov, D., Sukhachev, A., Edelman, I. S., Thakur, A. (2021), " Doping independent work function and stable band gap of spinel ferrites with tunable plasmonic and magnetic properties", Nano Lett., 21(22), 9780-9788. https://doi.org/10.1021/acs.nanolett.1c03767.
- Bharagava, R.N. (2018), Recent Advances in Environmental Management, CRC Press, Florida, U.S.A.
- Borhan, A.I., Samoila, P., Hulea, V., Iordan, A.R. and Palamaru, M.N. (2014), "Effect of Al3+ substituted zinc ferrite on photocatalytic degradation of Orange I azo dye", J. Photochem. Photobiol., A, 279, 17-23. https://doi.org/10.1016/j.jphotochem.2014.01.010.
- Cao, Z., Zhang, J., Zhou, J., Ruan, X., Chen, D., Liu, J., Liu, Q. and Qian, G. (2017), "Electroplating sludge derived zinc-ferrite catalyst for the efficient photo-Fenton degradation of dye", J. Environ. Manage., 193, 146-153. https://doi.org/10.1016/j.jenvman.2016.11.039.
- Chahar, D., Taneja, S., Thakur, P., Thakur, A. (2020), "Remarkable resistivity and improved dielectric properties of Co-Zn nanoferrites for high frequency applications", J. Alloys Compd., 843, 15568. https://doi.org/10.1016/j.jallcom.2020.155681.
- Chahar, D., Taneja, S., Bisht, S., Kesarwani, S., Thakur, P., Thakur, A., Sharma, P.B. (2021), "Photocatalytic activity of cobalt substituted zinc ferrite for the degradation of methylene blue dye under visible light irradiation", J. Alloys Compd., 851, 156878. https://doi.org/10.1016/j.jallcom.2020.156878.
- Chang, F., Chen, Z., Jing, J. and Hou, J. (2020), "The photocatalytic phenol degradation mechanism of Ag-modifed ZnO nanorods", J. Mater. Chem. C, 8(9), 3000-3009. https://doi.org/10.1039/C9TC05010H.
- Coutinho, D.M., Verenkar, V.M.S. (2017), "Preparation, spectroscopic and thermal analysis of hexa- hydrazine nickel cobalt ferrous succinate precursor and study of solid-state properties of its nanosized thermal product", J. Therm. Anal. Calorim., 128(2), 807-817. https://doi.org/10.1007/s10973-016-6011-8.
- Chen, W., Liu, D., Wu, W., Zhanga, H. and Wua, J. (2017), "Structure and magnetic properties evolution of rod-like Co0.5Ni0.25Zn0.25DyxFe2-xO4 synthesized by solvothermal method", J. Magn. Magn. Mater., 422, 49-56. https//doi.org/10.1016/j.jmmm.2016.08.067.
- Das, S., Dash, S.K., Parida, K.M. (2018), "Kinetics, isotherm and thermodynamic study for ultrafast adsorption of azo dye by an efficient sorbent: Ternary Mg/(Al+Fe) layered double hydroxides", ACS Omega, 3(3), 2532-2545. https://doi.org/10.1021/acsomega.7b01807.
- Dhiman, M., Goyal, A., Kumar, V., Singhal, S. (2016), "Designing different morphologies of NiFe2O4 for tuning of structural, optical and magnetic properties for catalytic advancements", New J. Chem., 40(12), 10418-10431. https://doi.org/10.1039/C6NJ03209E.
- Dutta, K., Mukhopadhyaya, S., Bhattacharjee, S. and Chaudhuri, B. (2001), "Chemical oxidation of methylene blue using a Fenton-like reaction", J. Hazard. Mater., 84(1), 57-71. https://doi.org/10.1016/s0304-3894(01)00202-3.
- Ekambaram, S.P., Perumal, S.S., Rajendran, D., Samivel, D., Khan, M.N. (2018), New Approach of Dye Removal in Textile Effluent: A Cost-Effective Management for Cleanup of Toxic Dyes in Textile Effluent by Water Hyacinth In Toxicity and Biodegradation Testing, Humana Press, New York, U.S.A. https://doi.org/10.1007/978-1-4939-7425-2_12.
- Ge, L., Liu, J. (2011), "Efficient visible light-induced photocatalytic degradation of methyl orange by QDs sensitized CdS-Bi2WO6", Appl. Catal. B Environ., 105(3-4), 289-297. https://doi.org/10.1016/j.apcatb.2011.04.016.
- Girgis, E., Adel, D., Tharwat, C., Attallah, O. and Rao, K.V. (2015), "Cobalt ferrite nanotubes and porous nanorods for dye removal", Adv. Nano Res., 3(2), 111-121. https://doi.org/10.12989/anr.2015.3.2.111.
- Habibi, M.H. and Parhizkar, J. (2015), "Cobalt ferrite nanocomposite coated on glass by Doctor Blade method for photocatalytic degradation of an azo textile dye Reactive Red 4: XRD, FESEM and DRS investigations", Spectrochim. Acta A, 150, 879-885. https://doi.org/10.1016/j.saa.2015.06.040.
- Habibi, M.H., Parhizkar, H.J. (2014), "FTIR and UV-vis diffuse reflectance spectroscopy studies of the wet chemical (WC) route synthesized nano-structure CoFe2O4 from CoCl2 and FeCl3", Spectrochim. Acta A, 127, 102-106. https://doi.org/10.1016/j.saa.2014.02.090.
- Guan, S., Li, R., Sun, X., Xian, T., Yang, H. (2020), " Construction of novel ternary Au/LaFeO3/Cu2O composite photocatalysts for RhB degrdation via photo-Fenton catalysis", Mater. Tech., 36(10), 603-615. https://doi.org/10.1080/10667857.2020,1782062.
- Ikram, M., Khan, M.I., Raza, A., Imran, M., Ul-Hamid, A. and Ali, S. (2020), "Outstanding performance of silver-decorated MoS2 nano petals used as nano catalyst for synthetic dye", Physica E, 124, 114246. https://doi.org/10.1016/j.physe.2020.114246.
- Jack Clifton, I.I., Leikin, J.B. (2003), "Methylene blue", Am. J. Therapeut., 10(4), 289-291. https://doi.org/10.1097/00045391-200307000-00009.
- Kalam, A., Al-Sehemi, A.G., Assiri, M., Du, G., Ahmad, T., Ahmad, I., Pannipara, M. (2018), "Modified solvothermal synthesis of cobalt ferrite (CoFe2O4) magnetic nanoparticles photocatalysts for degradation of methylene blue with H2O2/visible light", Results Phys., 8, 1046-1053. https://doi.org/10.1016/j.rinp.2018.01.045.
- Kalpakli, Y. (2015), "Removal of Cu(II) from aqueous solutions using magnetite: A kinetic, equilibrium study", Adv. Environ. Res., 4(2), 119-133. https://doi.org/10.12989/aer.2015.4.2.119.
- Kapoor, S., Goyal, A., Bansal, S. and Singhal, S. (2018), "Emergence of bismuth substituted cobalt ferrite nanostructures as versatile candidates for the enhanced oxidative degradation of hazardous organic dyes", New J. Chem., 42(18), 14965-14977. https://doi.org/10.1039/C8NJ00977E.
- Khademalrasool, M., Talebzadeh, M.D. and Farbod, M. (2020), "ZnO/Silver nanocubes nanocomposites: Preparation, characterization, and scrutiny of plasmon-induced photocatalysis activity", J. Photochem. Photobiol., A, 396, 112561. https://doi.org/10.1016/j.jphotochem.2020.112561.
- Kurian, M., Nair, D.S. (2015), "Heterogeneous Fenton behavior of nano nickel zinc ferrite catalysts in the degradation of 4-chlorophenol from water under neutral conditions", J. Water Proc. Eng., 8, e37-e49. https://doi.org/10.1016/j.jwpe.2014.10.011.
- Kurtinaitiene, M., Mazeika, K., Ramanavicius, S., Pakstas, V. and Jagminas, A. (2016), "Effect of additives on the hydrothermal synthesis of manganese ferrite nanoparticles", Adv. Nano Res., 4(1), 1-14. https://doi.org/10.12989/anr.2016.4.1.001.
- Ma, J., Chen, B., Chen, B., Zhang, S. (2017), "Preparation of superparamagnetic ZnFe2O4 submicrospheres via a solvothermal method", Adv. Nano Res., 5(2), 171-178, https://doi.org/10.12989/anr.2017.5.2.171.
- Mahmoodi, N.M., Abdi, J. and Bastani, D. (2014), "Direct dyes removal using modified magnetic ferrite nanoparticles", J. Environ. Health Sci. Eng., 12(1), 96. https://doi.org/10.1186/2052-336X-12-96.
- Manzoor, M., Rafiq, A., Ikram, M. (2018), "Structural, optical, and magnetic study of Ni-doped TiO2 nanoparticles synthesized by sol-gel method", Int. Nano Lett., 8(1), 1-8. https://doi.org/10.1007/s40089-018-0225-7.
- Mathur, P., Thakur, A., Singh, M. (2008a), "Low temperature synthesis of Mn0.4Zn0.6In0.5Al0.1Fe1.4O4 nano-ferrite and characterization for high frequency applications", Eur. Phys. J. Appl. Phys., 41(2), 133-138. https://doi.org/10.1051/epjap.2008003.
- Mathur, P., Thakur, A., Singh, M., Harris, G. (2008b), "Preparation and Characterization of Mn0.4NixZn0.6-xFe2O4 soft spinel ferrites for low and High Frequency Applications by Citrate Precursor Method", Zeitchrift fur Physikalische Chemie, 222(4), 621-633. https://doi.org/10.1524/zpch.2008.5265.
- Mathur, P., Thakur, A., Lee, J.H., Singh, M.(2010), "Sustained electromagnetic properties of Ni-Zn-Co nanoferrites for the high-frequency applications", Mater. Lett., 64(24), 2738-2741. https//doi.org/10.1016/j.matlet.2010.08.056.
- Mondal, A., Mondal, A. and Mukherjee, D. (2015), "Room-temperature synthesis of cobalt nanoparticles and their use as catalysts for Methylene blue and Rhodamine-B dye degradation", Adv. Nano Res., 3(2), 67-79. https://doi.org/10.12989/anr.2015.3.2.067.
- Nesbitt, H.W., Legrand, D., Bancroft, G.M. (2000), "Interpretation of Ni2p XPS spectra of Ni conductors and Ni insulators", Phys. Chem. Miner., 27(5), 357-366. https://doi.org/10.1007/s002690050265.
- Ojemaye, M.O., Okoh, A.I. (2019), "Multiple nitrogen functionalized magnetic nanoparticles as an efficient adsorbent: synthesis, kinetics, isotherm and thermodynamic studies for the removal of rhodamine B from aqueous solution", Sci. Rep., 9(1), 9672. https://doi.org/10.1038/s41598-019-45293-x.
- Rana, K., Thakur, P., Sharma, P., Tomar, M., Gupta, V., Thakur, A. (2015), "Improved structural and magnetic properties of cobalt nanoferrites : Influence of sintering temperature", Ceram. Int., 41(3), 4492-4497. https://doi.org/10.1016/j.ceramint.2014.11.143.
- Raza, A., Qumar, U., Hassan, J., Ikram, M., Ul-Hamid, A., Haider, J., Imran, M. and Ali, S. (2020), "A comparative study of dirac 2D materials, TMDCs and 2D insulators with regard to their structures and photocatalytic/sono photocatalytic behavior", Appl. Nanosci., 10(10), 3875-3899. https://doi.org/10.1007/s13204-020-01475-y.
- Sakti, S.C.W., Laily, R.N., Aliyah, S., Indrasari, N., Fahmi, M.Z., Lee, H.V., Akemotod, Y. and Tanaka, S. (2020), "Recollectable and recyclable epichlorohydrin-cross linked humic acid with spinel cobalt ferrite core for simple magnetic removal of cationic triarylmethane dyes in polluted water", J. Environ. Chem. Eng., 8(4), 104004. https://doi.org/10.1016/j.jece.2020.104004.
- Salazar-Kuri, U., Estevez, J.O., Silva-Gonzalez, N.R., Pal, Y. and Mendoza, M.E. (2017), "Structure and magnetic properties of the Co1-xNixFe2O4-BaTiO3 core-shell nanoparticles", J. Magn. Magn. Mater., 442, 247-254. https://doi.org/10.1016/j.jmmm.2017.06.126.
- Samavati, A. and Ismail, A.F. (2017), "Antibacterial properties of copper-substituted cobalt ferrite nanoparticles synthesized by co-precipitation method", Particuology, 30, 158-163. https://doi.org/10.1016/j.partic.2016.06.003.
- Saroukhani, Z., Tahmasebi, N., Mahdavi, S.M., Nematip, A. (2015), "Effect of working pressure and annealing temperature on microstructure and surface chemical composition of barium strontium titanate films grown by pulsed laser deposition", Bull. Mater. Sci., 38(6), 1645-1650. https://doi.org/10.1007/s12034-015-0982-0.
- Scheider, P. (1995), "Review adsorption isotherms of microporous-mesoporous solids revisited", Appl. Catal A-Gen., 129(2), 157-165. https://doi.org/10.1016/0926-860X(95)00110-7.
- Sen, S.K., Raut, S., Bandyopadhyay, P. and Raut, S. (2016), "Fungal decolouration and degradation of azo dyes: A review", Fungal Biol. Rev., 30(3), 112-133. https://doi.org/10.1016/j.fbr.2016.06.003.
- Sharma, P., Thakur, P., Mattei, J.L., Queffelec, P., Thakur, A. (2016), "Synthesis, structural, optical, electrical and Mossbauer spectroscopic studies of Co substituted Li0.5Fe2.5O4", J. Magn. Magn. Mater., 407, 17-23. https://doi.org/10.1016/j.jmmm.2016.01.023.
- Sharma, R., Bansal, S. and Singhal, S. (2015), "Tailoring the photo Fenton activity of spinel ferrites (MFe2O4) by incorporating different cations (M= Cu, Zn, Ni and Co) in the structure", RSC Adv., 5(8), 6006-6018. https://doi.org/10.1039/C4RA13692F.
- Sharma, R., Thakur, P., Kuma, M., Thakur, N., Negi, N.S., Sharma, P. and Sharma, V. (2016), "Improvement in magnetic behaviour of cobalt doped magnesium zinc nano-ferrites via co-precipitation route", J. Alloys Compd., 684, 569-581. https//doi.org/10.1016/j.jallcom.2016.05.200.
- Silambarasan, A., Rajesh, P., Ramasamy, P. (2014), "Synthesis, growth, structural, optical and thermal properties of an organic single crystal:4-Nitroaniline 4-aminobenzoic acid", Spectrochim. Acta A, 118, 24-27. https//doi.org/10.1016/j.saa.2013.08.052.
- Singh, C., Goyal, A. and Singhal, S. (2014), "Nickel-doped cobalt ferrite nanoparticles: Efficient catalysts for the reduction of nitro aromatic compounds and photo-oxidative degradation of toxic dyes", Nanoscale, 6(14), 7959-7970. https://doi.org/10.1039/C4NR01730G.
- Singh, C., Jauhar, S., Kumar, V., Singh, J. and Singhal, S. (2015), "Synthesis of zinc substituted cobalt ferrites via reverse micelle technique involving in situ template formation: A study on their structural, magnetic, optical and catalytic properties", Mater. Chem. Phys., 156, 188-197. https://doi.org/10.1016/j.matchemphys.2015.02.046.
- Sivakumar, S., Anusuya, D., Khatiwada, C.P., Sivasubramanian, J., Venkatesan, A. and Soundhirarajan, P. (2014), "Characterizations of diverse mole of pure and Ni-doped a -Fe2O3 synthesized nanoparticles through chemical precipitation route", Spectrochim. Acta A, 128, 69-75. https://doi.org/10.1016/j.saa.2014.02.136 .
- Suwanchawalit, C. and Somjit, V. (2015), "Hydrothermal synthesis of magnetic CoFe2O4 -graphene nanocomposite with enhanced photocatalytic performance", Digest J. Nanomater. Biostruct., 10, 769-777.
- Sun, S., Yang, X., Zhang, Y., Zhang, F. and Ding, J. (2013), "Enhanced photocatalytic activity of sponge-like ZnFe2O4 synthesized by solution combustion method", Prog. Nat. Sci., 22(6), 639-643. https://doi.org/10.1016/j.pnsc.2012.11.008.
- Taneja S., Chahar, D., Thakur, P. and Thakur, A. (2021), "Influence of bismuth doping on structural, electrical and dielectric properties of Ni-Zn nanoferrites", J. Alloys Compd., 859, 157760. https://doi.org/10.1016/j.jallcom.2020.157760.
- Thakur, A. and Singh, M.(2008), "Low temperature synthesis of Mn0.4Zn0.6ln0.5Fe1.5O4 nanoferrite for high-frequency applications", J. Phys. Chem. Solids, 69(1), 187-192. https://doi.org/10.1016/j.jpcs.2007.08.014.
- Thakur, P., Sharma, P., Luc, J., Patrick, M., Alex, Q., Sergei, V.T., Panina, L.V. and Thakur, A. (2018), "Influence of cobalt substitution on structural, optical, electrical and magnetic properties of nanosized lithium ferrite", J. Mater. Sci., 29(9), 16507-16515. https://doi.org/10.1007/s10854-018-9744-2.
- Theopil Anand, G., Kennedy, L.J., Vijaya, J.J., Kaviyarasan, K. and Sukumar, M. (2015), "Structural, optical and magnetic characterization of Zn1-xNixAl2O4 (0 <= x <= 0.5) spinel nanostructures synthesized by microwave combustion technique", Ceram. Int., 41(1), 603-615. https//doi.org/10.1016/j.ceramint.2014.08.109.
- Umar, K., Dar, A.A., Haque, M.M., Mir, N.A. and Muneer, M. (2012), "Photocatalysed decolourization of two textile dye derivatives, Martius Yellow and Acis Blue 129 in UV-irradiated aqueous suspensions of Titania", Desal. Water Treat., 46(1-3), 205-214. https://doi.org/10/1080/19443994.2012.677527. https://doi.org/10.1080/19443994.2012.677527
- Vijay, S., Balakrishnan, R.M., Rene, E.R. and Priyanka, U. (2019), "Photocatalytic degradation of Irgalite violet dye using nickel ferrite nanoparticles", J. Water Supply Res. T., 68(8), 666-674. https://doi.org/10.2166/aqua.2019.039.
- Vinosha, P.A., Xavier, B., Anceila, D. and Das S.J. (2018), "Nanocrystalline ferrite (MFe2O4, M= Ni, Cu, Mn and Sr) photocatalysts synthesized by homogeneous co-precipitation technique", Optik, 157, 441-448. https://doi.org/10.1016/j.ijleo.2017.11.016.
- Vinuthna, C., Ravinder, D. and Raju, R.M. (2013), "Characterization of Co1-xZnxFe2O4 nano spinel ferrites prepared by citrate precursor method", Mater. Sci., 3, 654-660. https://doi.org/10.1134/S1070427218080050.
- Xiong, P., Hu, C., Fan, Y., Zhang, W., Zhu, J. and Wang, X. (2014), "Ternary manganese ferrite/graphene/polyaniline nanostructure with enhanced electrochemical capacitance performance", J. Power Sources, 266, 384-392. https://doi.org/10.1016/j.jpowsour.2014.05.048.
- Yang, H. (2021), "A short review on heterojunction photocatalysts: Carrier transfer behavior and photocatalytic mechanims", Mater. Res. Bull., 142, 111406. https://doi.org/10.1016/j.materresbull.2021.111406.
- Yang, H., Zhang, C., Shi, X., Hu, H., Du, X., Fang, Y., Ma, Y., Wu, H. and Yang, S. (2010), "Water soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging", Biomaterials, 31(13), 3667-3673. https://doi.org/10.1016/j.biomaterials.2010.01.055.
- Zhu, M.X., Lu, L., Wang, H.H. and Wang, Z. (2007), "Removal of an anionic dye by adsorption/precipitation processes using alkaline white mud", J. Hazard Mater., 149(3), 735-741. https://doi.org/10.1016/j.jhazmat.2007.04.037.