DOI QR코드

DOI QR Code

Visible light assisted photocatalytic degradation of methylene blue dye using Ni doped Co-Zn nanoferrites

  • Thakur, Preeti (Department of Physics, Amity School of Applied Sciences, Amity University Haryana) ;
  • Chahar, Deepika (Department of Physics, Amity School of Applied Sciences, Amity University Haryana) ;
  • Thakur, Atul (Centre for Nanotechnology, Amity University Haryana)
  • Received : 2021.09.07
  • Accepted : 2022.01.28
  • Published : 2022.04.25

Abstract

Nickel substituted cobalt-zinc ferrite nanoparticles with composition Co0.5Zn0.5NixFe2-xO4 (x = 0.25, 0.5, 0.75, 1.0) were synthesized using a wet chemical method named citrate precursor method. Various characterizations of the prepared nanoferrites were done using X-ray powder diffractometry (XRD), Scanning electron microscopy (SEM), UV visible spectroscopy and Fourier transform spectroscopy technique (FT-IR). XRD confirmed the formation of cubic spinel structure of the samples with single phase having one characteristic peak at (311). The value of optical band gap (Eg) was found to decrease with Ni substitution and have values in the range 2.30eV to 1.69eV. A Fenton-type system was created by photocatalytic activity using source of visible light for removal of methylene blue dye. Observations revealed increase in the degradation of methylene blue dye with increasing nickel content in the samples. The degradation percentage was increased from 77.32% for x = 0.25 to 90.16% for x = 1.0 in one hour under the irradiation of visible light. Also, the degradation process was found to have pseudo first order kinetics model. Hence, it can be observed that synthesized nickel doped cobalt-zinc ferrites have good capability for water purification and its degradation efficiency enhanced with increase in nickel concentration.

Keywords

References

  1. Agrawal, S., Parveen A. and Azam A. (2016), "Structural, electrical, and optomagnetic tweaking of Zn doped CoFe2-xZnxO4 nanoparticles", J. Magn. Magn. Mater., 414, 114-152. https://doi.org/10.1016/j.jmmm.2016.04.059.
  2. Arora, C., Soni, S., Sahu, S., Mittal, J., Kumar, P., Bajpai, P.K. (2019), "Iron based metal organic framework for efficient removal of methylene blue dye from industrial waste", J. Mol. Liq., 284, 343-352. https://doi.org/10.1016/j.molliq.2019.04.012.
  3. Asghar, G., Rehman, M.A. (2012), "Structural, dielectric and magnetic properties of Cr-Zn doped strontium hexa-ferrites for high frequency applications", J. Alloys Compd., 526, 85-90. http://doi.org/10.1016/j.jallcom.2012.02.086.
  4. Atif, M. and Nadeem, M. (2014), "Sol-gel synthesis of nanocrystalline Zn1-xNixFe2O4 ceramics and its structural, magnetic and dielectric properties", J. Sol-Gel Sci. Technol., 72(3), 615-626. https://doi.org/10.1007/s10971-014-3484-4.
  5. Balgude, S., Barkade, S. and Mardikar, S. (2020), Metal Oxides for High-Performance Hydrogen Generation by Water Splitting in Multifunctional Nanostructured Metal Oxides for Energy Harvesting and Storage Devices, CRC press, Florida, U.S.A. https://doi.org/10.1201/9780429296871-6.
  6. Balgude, S., Sethi, Y., Gaikwad, A., Kale, B., Amalnerkar, D. and Adhyapak, P. (2020), "Unique N doped Sn3O4 nanosheets as an efficient and stable photocatalyst for hydrogen generation under sunlight", Nanoscale, 12(15), 8502-8510. https://doi.org/10.1039/C9NR10439A.
  7. Bera, S., Prince, A.A.M., Velmurugan, S., Raghavan, P.S., Gopalan, R., Panneerselvam, G., Narasimhan, S.V. (2001), "Formation of zinc ferrite by solid state reaction and its characterization by XRD and XPS", J. Mater. Sci., 36(22), 5379-5384. https://doi.org/10.1023/A:1012488422484.
  8. Bhalla, N., Taneja, S., Thakur, P., Sharma, P.K., Mariotti, D., Maddi, C., Ivanova, O., Petrov, D., Sukhachev, A., Edelman, I. S., Thakur, A. (2021), " Doping independent work function and stable band gap of spinel ferrites with tunable plasmonic and magnetic properties", Nano Lett., 21(22), 9780-9788. https://doi.org/10.1021/acs.nanolett.1c03767.
  9. Bharagava, R.N. (2018), Recent Advances in Environmental Management, CRC Press, Florida, U.S.A.
  10. Borhan, A.I., Samoila, P., Hulea, V., Iordan, A.R. and Palamaru, M.N. (2014), "Effect of Al3+ substituted zinc ferrite on photocatalytic degradation of Orange I azo dye", J. Photochem. Photobiol., A, 279, 17-23. https://doi.org/10.1016/j.jphotochem.2014.01.010.
  11. Cao, Z., Zhang, J., Zhou, J., Ruan, X., Chen, D., Liu, J., Liu, Q. and Qian, G. (2017), "Electroplating sludge derived zinc-ferrite catalyst for the efficient photo-Fenton degradation of dye", J. Environ. Manage., 193, 146-153. https://doi.org/10.1016/j.jenvman.2016.11.039.
  12. Chahar, D., Taneja, S., Thakur, P., Thakur, A. (2020), "Remarkable resistivity and improved dielectric properties of Co-Zn nanoferrites for high frequency applications", J. Alloys Compd., 843, 15568. https://doi.org/10.1016/j.jallcom.2020.155681.
  13. Chahar, D., Taneja, S., Bisht, S., Kesarwani, S., Thakur, P., Thakur, A., Sharma, P.B. (2021), "Photocatalytic activity of cobalt substituted zinc ferrite for the degradation of methylene blue dye under visible light irradiation", J. Alloys Compd., 851, 156878. https://doi.org/10.1016/j.jallcom.2020.156878.
  14. Chang, F., Chen, Z., Jing, J. and Hou, J. (2020), "The photocatalytic phenol degradation mechanism of Ag-modifed ZnO nanorods", J. Mater. Chem. C, 8(9), 3000-3009. https://doi.org/10.1039/C9TC05010H.
  15. Coutinho, D.M., Verenkar, V.M.S. (2017), "Preparation, spectroscopic and thermal analysis of hexa- hydrazine nickel cobalt ferrous succinate precursor and study of solid-state properties of its nanosized thermal product", J. Therm. Anal. Calorim., 128(2), 807-817. https://doi.org/10.1007/s10973-016-6011-8.
  16. Chen, W., Liu, D., Wu, W., Zhanga, H. and Wua, J. (2017), "Structure and magnetic properties evolution of rod-like Co0.5Ni0.25Zn0.25DyxFe2-xO4 synthesized by solvothermal method", J. Magn. Magn. Mater., 422, 49-56. https//doi.org/10.1016/j.jmmm.2016.08.067.
  17. Das, S., Dash, S.K., Parida, K.M. (2018), "Kinetics, isotherm and thermodynamic study for ultrafast adsorption of azo dye by an efficient sorbent: Ternary Mg/(Al+Fe) layered double hydroxides", ACS Omega, 3(3), 2532-2545. https://doi.org/10.1021/acsomega.7b01807.
  18. Dhiman, M., Goyal, A., Kumar, V., Singhal, S. (2016), "Designing different morphologies of NiFe2O4 for tuning of structural, optical and magnetic properties for catalytic advancements", New J. Chem., 40(12), 10418-10431. https://doi.org/10.1039/C6NJ03209E.
  19. Dutta, K., Mukhopadhyaya, S., Bhattacharjee, S. and Chaudhuri, B. (2001), "Chemical oxidation of methylene blue using a Fenton-like reaction", J. Hazard. Mater., 84(1), 57-71. https://doi.org/10.1016/s0304-3894(01)00202-3.
  20. Ekambaram, S.P., Perumal, S.S., Rajendran, D., Samivel, D., Khan, M.N. (2018), New Approach of Dye Removal in Textile Effluent: A Cost-Effective Management for Cleanup of Toxic Dyes in Textile Effluent by Water Hyacinth In Toxicity and Biodegradation Testing, Humana Press, New York, U.S.A. https://doi.org/10.1007/978-1-4939-7425-2_12.
  21. Ge, L., Liu, J. (2011), "Efficient visible light-induced photocatalytic degradation of methyl orange by QDs sensitized CdS-Bi2WO6", Appl. Catal. B Environ., 105(3-4), 289-297. https://doi.org/10.1016/j.apcatb.2011.04.016.
  22. Girgis, E., Adel, D., Tharwat, C., Attallah, O. and Rao, K.V. (2015), "Cobalt ferrite nanotubes and porous nanorods for dye removal", Adv. Nano Res., 3(2), 111-121. https://doi.org/10.12989/anr.2015.3.2.111.
  23. Habibi, M.H. and Parhizkar, J. (2015), "Cobalt ferrite nanocomposite coated on glass by Doctor Blade method for photocatalytic degradation of an azo textile dye Reactive Red 4: XRD, FESEM and DRS investigations", Spectrochim. Acta A, 150, 879-885. https://doi.org/10.1016/j.saa.2015.06.040.
  24. Habibi, M.H., Parhizkar, H.J. (2014), "FTIR and UV-vis diffuse reflectance spectroscopy studies of the wet chemical (WC) route synthesized nano-structure CoFe2O4 from CoCl2 and FeCl3", Spectrochim. Acta A, 127, 102-106. https://doi.org/10.1016/j.saa.2014.02.090.
  25. Guan, S., Li, R., Sun, X., Xian, T., Yang, H. (2020), " Construction of novel ternary Au/LaFeO3/Cu2O composite photocatalysts for RhB degrdation via photo-Fenton catalysis", Mater. Tech., 36(10), 603-615. https://doi.org/10.1080/10667857.2020,1782062.
  26. Ikram, M., Khan, M.I., Raza, A., Imran, M., Ul-Hamid, A. and Ali, S. (2020), "Outstanding performance of silver-decorated MoS2 nano petals used as nano catalyst for synthetic dye", Physica E, 124, 114246. https://doi.org/10.1016/j.physe.2020.114246.
  27. Jack Clifton, I.I., Leikin, J.B. (2003), "Methylene blue", Am. J. Therapeut., 10(4), 289-291. https://doi.org/10.1097/00045391-200307000-00009.
  28. Kalam, A., Al-Sehemi, A.G., Assiri, M., Du, G., Ahmad, T., Ahmad, I., Pannipara, M. (2018), "Modified solvothermal synthesis of cobalt ferrite (CoFe2O4) magnetic nanoparticles photocatalysts for degradation of methylene blue with H2O2/visible light", Results Phys., 8, 1046-1053. https://doi.org/10.1016/j.rinp.2018.01.045.
  29. Kalpakli, Y. (2015), "Removal of Cu(II) from aqueous solutions using magnetite: A kinetic, equilibrium study", Adv. Environ. Res., 4(2), 119-133. https://doi.org/10.12989/aer.2015.4.2.119.
  30. Kapoor, S., Goyal, A., Bansal, S. and Singhal, S. (2018), "Emergence of bismuth substituted cobalt ferrite nanostructures as versatile candidates for the enhanced oxidative degradation of hazardous organic dyes", New J. Chem., 42(18), 14965-14977. https://doi.org/10.1039/C8NJ00977E.
  31. Khademalrasool, M., Talebzadeh, M.D. and Farbod, M. (2020), "ZnO/Silver nanocubes nanocomposites: Preparation, characterization, and scrutiny of plasmon-induced photocatalysis activity", J. Photochem. Photobiol., A, 396, 112561. https://doi.org/10.1016/j.jphotochem.2020.112561.
  32. Kurian, M., Nair, D.S. (2015), "Heterogeneous Fenton behavior of nano nickel zinc ferrite catalysts in the degradation of 4-chlorophenol from water under neutral conditions", J. Water Proc. Eng., 8, e37-e49. https://doi.org/10.1016/j.jwpe.2014.10.011.
  33. Kurtinaitiene, M., Mazeika, K., Ramanavicius, S., Pakstas, V. and Jagminas, A. (2016), "Effect of additives on the hydrothermal synthesis of manganese ferrite nanoparticles", Adv. Nano Res., 4(1), 1-14. https://doi.org/10.12989/anr.2016.4.1.001.
  34. Ma, J., Chen, B., Chen, B., Zhang, S. (2017), "Preparation of superparamagnetic ZnFe2O4 submicrospheres via a solvothermal method", Adv. Nano Res., 5(2), 171-178, https://doi.org/10.12989/anr.2017.5.2.171.
  35. Mahmoodi, N.M., Abdi, J. and Bastani, D. (2014), "Direct dyes removal using modified magnetic ferrite nanoparticles", J. Environ. Health Sci. Eng., 12(1), 96. https://doi.org/10.1186/2052-336X-12-96.
  36. Manzoor, M., Rafiq, A., Ikram, M. (2018), "Structural, optical, and magnetic study of Ni-doped TiO2 nanoparticles synthesized by sol-gel method", Int. Nano Lett., 8(1), 1-8. https://doi.org/10.1007/s40089-018-0225-7.
  37. Mathur, P., Thakur, A., Singh, M. (2008a), "Low temperature synthesis of Mn0.4Zn0.6In0.5Al0.1Fe1.4O4 nano-ferrite and characterization for high frequency applications", Eur. Phys. J. Appl. Phys., 41(2), 133-138. https://doi.org/10.1051/epjap.2008003.
  38. Mathur, P., Thakur, A., Singh, M., Harris, G. (2008b), "Preparation and Characterization of Mn0.4NixZn0.6-xFe2O4 soft spinel ferrites for low and High Frequency Applications by Citrate Precursor Method", Zeitchrift fur Physikalische Chemie, 222(4), 621-633. https://doi.org/10.1524/zpch.2008.5265.
  39. Mathur, P., Thakur, A., Lee, J.H., Singh, M.(2010), "Sustained electromagnetic properties of Ni-Zn-Co nanoferrites for the high-frequency applications", Mater. Lett., 64(24), 2738-2741. https//doi.org/10.1016/j.matlet.2010.08.056.
  40. Mondal, A., Mondal, A. and Mukherjee, D. (2015), "Room-temperature synthesis of cobalt nanoparticles and their use as catalysts for Methylene blue and Rhodamine-B dye degradation", Adv. Nano Res., 3(2), 67-79. https://doi.org/10.12989/anr.2015.3.2.067.
  41. Nesbitt, H.W., Legrand, D., Bancroft, G.M. (2000), "Interpretation of Ni2p XPS spectra of Ni conductors and Ni insulators", Phys. Chem. Miner., 27(5), 357-366. https://doi.org/10.1007/s002690050265.
  42. Ojemaye, M.O., Okoh, A.I. (2019), "Multiple nitrogen functionalized magnetic nanoparticles as an efficient adsorbent: synthesis, kinetics, isotherm and thermodynamic studies for the removal of rhodamine B from aqueous solution", Sci. Rep., 9(1), 9672. https://doi.org/10.1038/s41598-019-45293-x.
  43. Rana, K., Thakur, P., Sharma, P., Tomar, M., Gupta, V., Thakur, A. (2015), "Improved structural and magnetic properties of cobalt nanoferrites : Influence of sintering temperature", Ceram. Int., 41(3), 4492-4497. https://doi.org/10.1016/j.ceramint.2014.11.143.
  44. Raza, A., Qumar, U., Hassan, J., Ikram, M., Ul-Hamid, A., Haider, J., Imran, M. and Ali, S. (2020), "A comparative study of dirac 2D materials, TMDCs and 2D insulators with regard to their structures and photocatalytic/sono photocatalytic behavior", Appl. Nanosci., 10(10), 3875-3899. https://doi.org/10.1007/s13204-020-01475-y.
  45. Sakti, S.C.W., Laily, R.N., Aliyah, S., Indrasari, N., Fahmi, M.Z., Lee, H.V., Akemotod, Y. and Tanaka, S. (2020), "Recollectable and recyclable epichlorohydrin-cross linked humic acid with spinel cobalt ferrite core for simple magnetic removal of cationic triarylmethane dyes in polluted water", J. Environ. Chem. Eng., 8(4), 104004. https://doi.org/10.1016/j.jece.2020.104004.
  46. Salazar-Kuri, U., Estevez, J.O., Silva-Gonzalez, N.R., Pal, Y. and Mendoza, M.E. (2017), "Structure and magnetic properties of the Co1-xNixFe2O4-BaTiO3 core-shell nanoparticles", J. Magn. Magn. Mater., 442, 247-254. https://doi.org/10.1016/j.jmmm.2017.06.126.
  47. Samavati, A. and Ismail, A.F. (2017), "Antibacterial properties of copper-substituted cobalt ferrite nanoparticles synthesized by co-precipitation method", Particuology, 30, 158-163. https://doi.org/10.1016/j.partic.2016.06.003.
  48. Saroukhani, Z., Tahmasebi, N., Mahdavi, S.M., Nematip, A. (2015), "Effect of working pressure and annealing temperature on microstructure and surface chemical composition of barium strontium titanate films grown by pulsed laser deposition", Bull. Mater. Sci., 38(6), 1645-1650. https://doi.org/10.1007/s12034-015-0982-0.
  49. Scheider, P. (1995), "Review adsorption isotherms of microporous-mesoporous solids revisited", Appl. Catal A-Gen., 129(2), 157-165. https://doi.org/10.1016/0926-860X(95)00110-7.
  50. Sen, S.K., Raut, S., Bandyopadhyay, P. and Raut, S. (2016), "Fungal decolouration and degradation of azo dyes: A review", Fungal Biol. Rev., 30(3), 112-133. https://doi.org/10.1016/j.fbr.2016.06.003.
  51. Sharma, P., Thakur, P., Mattei, J.L., Queffelec, P., Thakur, A. (2016), "Synthesis, structural, optical, electrical and Mossbauer spectroscopic studies of Co substituted Li0.5Fe2.5O4", J. Magn. Magn. Mater., 407, 17-23. https://doi.org/10.1016/j.jmmm.2016.01.023.
  52. Sharma, R., Bansal, S. and Singhal, S. (2015), "Tailoring the photo Fenton activity of spinel ferrites (MFe2O4) by incorporating different cations (M= Cu, Zn, Ni and Co) in the structure", RSC Adv., 5(8), 6006-6018. https://doi.org/10.1039/C4RA13692F.
  53. Sharma, R., Thakur, P., Kuma, M., Thakur, N., Negi, N.S., Sharma, P. and Sharma, V. (2016), "Improvement in magnetic behaviour of cobalt doped magnesium zinc nano-ferrites via co-precipitation route", J. Alloys Compd., 684, 569-581. https//doi.org/10.1016/j.jallcom.2016.05.200.
  54. Silambarasan, A., Rajesh, P., Ramasamy, P. (2014), "Synthesis, growth, structural, optical and thermal properties of an organic single crystal:4-Nitroaniline 4-aminobenzoic acid", Spectrochim. Acta A, 118, 24-27. https//doi.org/10.1016/j.saa.2013.08.052.
  55. Singh, C., Goyal, A. and Singhal, S. (2014), "Nickel-doped cobalt ferrite nanoparticles: Efficient catalysts for the reduction of nitro aromatic compounds and photo-oxidative degradation of toxic dyes", Nanoscale, 6(14), 7959-7970. https://doi.org/10.1039/C4NR01730G.
  56. Singh, C., Jauhar, S., Kumar, V., Singh, J. and Singhal, S. (2015), "Synthesis of zinc substituted cobalt ferrites via reverse micelle technique involving in situ template formation: A study on their structural, magnetic, optical and catalytic properties", Mater. Chem. Phys., 156, 188-197. https://doi.org/10.1016/j.matchemphys.2015.02.046.
  57. Sivakumar, S., Anusuya, D., Khatiwada, C.P., Sivasubramanian, J., Venkatesan, A. and Soundhirarajan, P. (2014), "Characterizations of diverse mole of pure and Ni-doped a -Fe2O3 synthesized nanoparticles through chemical precipitation route", Spectrochim. Acta A, 128, 69-75. https://doi.org/10.1016/j.saa.2014.02.136 .
  58. Suwanchawalit, C. and Somjit, V. (2015), "Hydrothermal synthesis of magnetic CoFe2O4 -graphene nanocomposite with enhanced photocatalytic performance", Digest J. Nanomater. Biostruct., 10, 769-777.
  59. Sun, S., Yang, X., Zhang, Y., Zhang, F. and Ding, J. (2013), "Enhanced photocatalytic activity of sponge-like ZnFe2O4 synthesized by solution combustion method", Prog. Nat. Sci., 22(6), 639-643. https://doi.org/10.1016/j.pnsc.2012.11.008.
  60. Taneja S., Chahar, D., Thakur, P. and Thakur, A. (2021), "Influence of bismuth doping on structural, electrical and dielectric properties of Ni-Zn nanoferrites", J. Alloys Compd., 859, 157760. https://doi.org/10.1016/j.jallcom.2020.157760.
  61. Thakur, A. and Singh, M.(2008), "Low temperature synthesis of Mn0.4Zn0.6ln0.5Fe1.5O4 nanoferrite for high-frequency applications", J. Phys. Chem. Solids, 69(1), 187-192. https://doi.org/10.1016/j.jpcs.2007.08.014.
  62. Thakur, P., Sharma, P., Luc, J., Patrick, M., Alex, Q., Sergei, V.T., Panina, L.V. and Thakur, A. (2018), "Influence of cobalt substitution on structural, optical, electrical and magnetic properties of nanosized lithium ferrite", J. Mater. Sci., 29(9), 16507-16515. https://doi.org/10.1007/s10854-018-9744-2.
  63. Theopil Anand, G., Kennedy, L.J., Vijaya, J.J., Kaviyarasan, K. and Sukumar, M. (2015), "Structural, optical and magnetic characterization of Zn1-xNixAl2O4 (0 <= x <= 0.5) spinel nanostructures synthesized by microwave combustion technique", Ceram. Int., 41(1), 603-615. https//doi.org/10.1016/j.ceramint.2014.08.109.
  64. Umar, K., Dar, A.A., Haque, M.M., Mir, N.A. and Muneer, M. (2012), "Photocatalysed decolourization of two textile dye derivatives, Martius Yellow and Acis Blue 129 in UV-irradiated aqueous suspensions of Titania", Desal. Water Treat., 46(1-3), 205-214. https://doi.org/10/1080/19443994.2012.677527. https://doi.org/10.1080/19443994.2012.677527
  65. Vijay, S., Balakrishnan, R.M., Rene, E.R. and Priyanka, U. (2019), "Photocatalytic degradation of Irgalite violet dye using nickel ferrite nanoparticles", J. Water Supply Res. T., 68(8), 666-674. https://doi.org/10.2166/aqua.2019.039.
  66. Vinosha, P.A., Xavier, B., Anceila, D. and Das S.J. (2018), "Nanocrystalline ferrite (MFe2O4, M= Ni, Cu, Mn and Sr) photocatalysts synthesized by homogeneous co-precipitation technique", Optik, 157, 441-448. https://doi.org/10.1016/j.ijleo.2017.11.016.
  67. Vinuthna, C., Ravinder, D. and Raju, R.M. (2013), "Characterization of Co1-xZnxFe2O4 nano spinel ferrites prepared by citrate precursor method", Mater. Sci., 3, 654-660. https://doi.org/10.1134/S1070427218080050.
  68. Xiong, P., Hu, C., Fan, Y., Zhang, W., Zhu, J. and Wang, X. (2014), "Ternary manganese ferrite/graphene/polyaniline nanostructure with enhanced electrochemical capacitance performance", J. Power Sources, 266, 384-392. https://doi.org/10.1016/j.jpowsour.2014.05.048.
  69. Yang, H. (2021), "A short review on heterojunction photocatalysts: Carrier transfer behavior and photocatalytic mechanims", Mater. Res. Bull., 142, 111406. https://doi.org/10.1016/j.materresbull.2021.111406.
  70. Yang, H., Zhang, C., Shi, X., Hu, H., Du, X., Fang, Y., Ma, Y., Wu, H. and Yang, S. (2010), "Water soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging", Biomaterials, 31(13), 3667-3673. https://doi.org/10.1016/j.biomaterials.2010.01.055.
  71. Zhu, M.X., Lu, L., Wang, H.H. and Wang, Z. (2007), "Removal of an anionic dye by adsorption/precipitation processes using alkaline white mud", J. Hazard Mater., 149(3), 735-741. https://doi.org/10.1016/j.jhazmat.2007.04.037.