References
- Asrari, R., Ebrahimi, F. and Kheirikhah, M.M. (2020), "On post-buckling characteristics of functionally graded smart magneto-electro-elastic nanoscale shells", Adv. Nano Res., 9(1), 33-45. https://doi.org/10.12989/anr.2020.9.1.033.
- Bagheri, R. and Tadi Beni, Y. (2021), "On the size-dependent nonlinear dynamics of viscoelastic/flexoelectric nanobeams", J. Vib. Control, 27(17-18), 2018-2033. https://doi.org/10.1177/1077546320952225.
- Barati, M.R. and Zenkour, A.M. (2019), "Thermal post-buckling analysis of closed circuit flexoelectric nanobeams with surface effects and geometrical imperfection", Mech. Adv. Mater. Struct., 26(17), 1482-1490. https://doi.org/10.1080/15376494.2018.1432821.
- Belyaev, B.A., Izotov, A.V., Solovev, P.N. and Boev, N.M. (2020), "Strain-gradient-induced unidirectional magnetic anisotropy in nanocrystalline thin permalloy films", Physica Status Solidi (RRL), 14(1), 1900467. https://doi.org/10.1002/pssr.201900467.
- Cai, R., Antohe, V.A., Nysten, B., Piraux, L. and Jonas, A.M. (2020), "Thermally induced flexo-type effects in nanopatterned multiferroic layers", Adv. Funct. Mater., 30(14), 1910371. https://doi.org/10.1002/adfm.201910371.
- Eliseev, E.A., Morozovska, A.N., Glinchuk, M.D. and Blinc, R. (2009), "Spontaneous flexoelectric/flexomagnetic effect in nanoferroics", Phys. Rev. B, 79(16), 165433. https://link.aps.org/doi/10.1103/PhysRevB.79.165433.
- Eliseev, E.A., Glinchuk, M.D., Khist, V., Skorokhod, V.V., Blinc, R. and Morozovska, A.N. (2011), "Linear magnetoelectric coupling and ferroelectricity induced by the flexomagnetic effect in ferroics", Phys. Rev. B, 84(17), 174112. https://link.aps.org/doi/10.1103/PhysRevB.84.174112.
- Eliseev, E.A., Morozovska, A.N., Khist, V.V. and Polinger, V. (2019), Chapter Six- Effective Flexoelectric and Flexomagnetic Response of Ferroics In Solid State Physics, 70, 237-289, Academic Press, Massachusetts, U.S.A.
- Fahrner, W.R. (2005), Nanotechnology and Nanoelectronics: Materials, Devices, Measurement Techniques, Springer, Berlin, Germany.
- Fenjan, R.M., Hamad, L.B. and Faleh, N.M. (2020), "Mechanicalhygro-thermal vibrations of functionally graded porous plates with nonlocal and strain gradient effects", Adv. Aircr. Spacecr., 7(2), 169-186. https://doi.org/10.12989/aas.2020.7.2.169.
- Gunda, J.B. (2014), "Thermal post-buckling and large amplitude free vibration analysis of Timoshenko beams: Simple closed-form solutions", Appl. Math. Model., 38(17-18), 4548-4558. https://doi.org/10.1016/j.apm.2014.02.019.
- Gupta, R., Gunda, J.B., Ranga Janardhan, G. and Venkateswara, R.G. (2010), "Post-buckling analysis of composite beams: Simple and accurate closed-form expressions", Compos. Struct., 92(8), 1947-1956. https://doi.org/10.1016/j.compstruct.2009.12.010.
- Kundalwal, S.I. and Ray, M.C. (2016), "Smart damping of fuzzy fiber reinforced composite plates using 1-3 piezoelectric composites", J. Vib. Control., 22(6), 1526-1546. https://doi.org/10.1177/1077546314543726.
- Kundalwal, S.I., Shingare, K.B. and Rathi, A. (2019), "Effect of flexoelectricity on the electromechanical response of graphene nanocomposite beam", Int. J. Mech. Mater. Des., 15(3), 447-470. https://doi.org/10.1007/s10999-018-9417-6.
- Lee, D., Yoon, A., Jang, S.Y., Yoon, J.G., Chung, J.S., Kim, M., Scott, J.F. and Noh, T.W. (2011), "Giant flexoelectric effect in ferroelectric epitaxial thin films", Phys. Rev. Lett, 107(5), 057602. https://doi.org/10.1103/PhysRevLett.107.057602.
- Li, L. and Hu, Y. (2017), "Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects", Int. J. Mech. Sci., 120, 159-170. https://doi.org/10.1016/j.ijmecsci.2016. 11.025.
- Lim, C., Zhang, G. and Reddy, J. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02. 001.
- Lu, L., Guo, X. and Zhao, J. (2017b), "A unified nonlocal strain gradient model for nanobeams and the importance of higher order terms", Int. J. Eng. Sci., 119, 265-277. https://doi.org/10.1016/j.ijengsci.2017. 06.024.
- Lukashev, P. and Sabirianov, R.F. (2010), "Flexomagnetic effect in frustrated triangular magnetic structures", Phys. Rev. B, 82(9), 094417. https://doi.org/10.1103/PhysRevB.82.094417.
- Malikan, M. and Eremeyev, V.A. (2021a), "Flexomagnetic response of buckled piezomagnetic composite nanoplates", Compos. Struct., 267, 113932. https://doi.org/10.1016/j.compstruct. 2021.113932.
- Malikan, M. and Eremeyev, V.A. (2021b), "Flexomagneticity in buckled shear de- formable hard-magnetic soft structures", Continuum Mech. Therm., 34(1), 1-16. https://doi.org/10.1007/s00161-021-01034-y.
- Malikan, M., Uglov, N.S. and Eremeyev, V.A. (2020), "On instabilities and post-buckling of piezomagnetic and flexomagnetic nanostructures", Int. J. Eng. Sci., 157, 103395. https://doi.org/10.1016/j.ijengsci.2020.103395.
- Malikan, M., Wiczenbach, T. and Eremeyev, V.A. (2021), "On thermal stability of piezo-flexomagnetic microbeams considering different temperature distributions", Continuum Mech. Therm., 33(4), 1281- 1297. https://doi.org/10.1007/s00161-021-00971-y.
- Mir, M. and Tahani, M. (2020), "Graphene-based mass sensors: Chaotic dynamics analysis using the nonlocal strain gradient model", Appl. Math. Model., 81, 799-817. https://doi.org/ 10.1016/j.apm.2020.01.022.
- Mirjavadi, S.S., Forsat, M., Barati, M.R., Abdella, G.M., Hamouda, A.M.S., Afshari, B.M. and Rabby, S. (2019), "Post-buckling analysis of piezo-magnetic nanobeams with geometrical imperfection and different piezoelectric contents", Microsyst. Technol., 25(9), 3477-3488. https://doi.org/10.1007/s00542-018-4241-3.
- Mohamed, N., Eltaher, M.A., Mohamed, S.A. and Seddek, L.F. (2019), "Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation", Struct. Eng. Mech., 70(6), 737-750. https://doi.org/10.12989/sem.2019.70.6.737.
- Moosavi, S.M., Sarani, Z., Chia, C.H., Gan, S., Azahari, N.A. and Kaco, H. (2017), "Hydrothermal synthesis, magnetic properties and characterization of CoFe2O4 nanocrystals", Ceram. Int., 43(10), 7889-7894. https://doi.org/10.1016/j.ceramint.2017. 03.110.
- Moradi, R., Radhi, A. and Behdinan, K. (2020), "Damped dynamic behavior of an advanced piezoelectric sandwich plate", Compos. Struct., 243, 112243. https://doi.org/10.1016/j.compstruct.2020.112243.
- Pan, E. and Han, F. (2005), "Exact solution for functionally graded and layered magneto-electro-elastic plates", Int. J. Eng. Sci., 43(3-4), 321-339. https://doi.org/ 10.1016/j.ijengsci.2004.09.006.
- Pyatakov, A.P. and Zvezdin, A.K. (2009), "Flexomagnetoelectric interaction in multiferroics", Eur. Phys. J. B, 71(3), 419-427. https://doi.org/10.1140/epjb/e2009-00281-5.
- Radgolchin, M. and Tahani, M. (2021), "Nonlinear vibration analysis of beam microgyroscopes using nonlocal strain gradient theory", Sens. Imag., 22(1), 1-25. https://doi.org/10.1007/s11220-021-00336-4.
- Reddy, J.N. (2006), Theory and Analysis of Elastic Plates and Shells (2nd ed.), CRC Press, Florida, U.S.A.
- Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007. 04.004.
- Reddy, J.N. (2010), "Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates", Int. J. Eng. Sci., 48(11), 1507-1518. https://doi.org/10.1016/j.ijengsci.2010.09.020.
- Shi, W., Guo, Y., Zhang, Z. and Guo, W. (2019), "Strain gradient mediated magnetism and polarization in monolayer V Se2", J. Phys. Chem. C, 123(40), 24988-24993. https:// doi.org/10.1021/acs.jpcc.9b08445.
- Shi, Y., Li, N., Ye, J. and Ma, J. (2021), "Enhanced magneto-electric response in nanostructures due to flexoelectric and flexomagnetic effects", J. Magn. Magn. Mater., 521, 167523. https://doi.org/10.1016/j.jmmm.2020. 167523.
- Shingare, K.B. and Kundalwal, S.I. (2019), "Static and dynamic response of graphene nanocomposite plates with flexoelectric effect", Mech. Mater., 134, 69-84. https://doi.org/10.1016/j.mechmat.2019.04.006.
- Sidhardh, S. and Ray, M.C. (2018), "Flexomagnetic response of nanostructures", J. Appl. Phys., 124(24), 244101. https://doi.org/10. 1063/1.5060672. https://doi.org/10.1063/1.5060672
- Sladek, J., Sladek, V., Xu, M. and Deng, Q. (2021), "A cantilever beam analysis with flexomagnetic effect", Meccanica, 56(9), 2281-2292. https://doi. org/10.1007/s11012-021-01357-9.
- Sun, X.P., Hong, Y.Z., Dai, H.L. and Wang, L. (2017), "Nonlinear frequency analysis of buckled nanobeams in the presence of longitudinal magnetic field", Acta Mechanica Solida Sinica, 30(5), 465-473. https://doi.org/10.1016/j.camss.2017.08. 002.
- Wang, B. and Li, X.F. (2021), "Flexoelectric effects on the natural frequencies for free vibration of piezoelectric nanoplates", J. Appl. Phys., 129(3), 034102. https://doi.org/10.1063/5.0032343.
- Xu, X. and Zheng, M. (2019), "Analytical solutions for buckling of size-dependent Timoshenko beams", Appl. Math. Mech., 40(7), 953-976. https://doi.org/10.1007/s10483-019-2494-8.
- Zhang, J.X., Zeches, R.J., He, Q., Chu, Y.H. and Ramesh, R. (2012), "Nanoscale phase boundaries: A new twist to novel functionalities", Nanoscale, 4(20), 6196-6204. http://doi.org/10.1039/C2NR31174G.
- Zhang, N., Zheng, S. and Chen, D. (2019), "Size-dependent static bending of flexomagnetic nanobeams", J. Appl. Phys., 126(22), 223901. https://doi.org/10.1063/1.5128940.