References
- Akbas, S.D. (2016a), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125.
- Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3),579-599. https://doi.org/10.12989/sem.2016.59.3.579.
- Akbas, S.D. (2016c), "Static analysis of a nano plate by using generalized differential quadrature method", Int. J. Eng. Appl. Sci., 8(2), 30-39. https://doi.org/10.24107/ijeas.252143.
- Akbas, S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(3),1750033. https://doi.org/10.1142/S021945541750033X.
- Akbas S.D. (2017b), Static, Vibration, and Buckling Analysis of Nanobeams, Nanomechanics, InTech, Rijeka, Croatia.
- Akbas, S.D. (2017c), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009.
- Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039.
- Akbas, S.D. (2018b), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(8), 392. https://doi.org/10.1007/s40430-018-1315-1.
- Akbas, S.D. (2018c), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219-242. https://doi.org/10.12989/anr.2018.6.3.219.
- Akbas, S.D. (2019a) "Axially forced vibration analysis of cracked a nanorod", J. Comput. Appl. Mech., 5(2), 477-485. https://doi.org/10.22059/JCAMECH.2019.281285.392.
- Akbas, S.D. (2019b) "Longitudinal forced vibration analysis of porous a nanorod", Muhendislik Bilimleri ve Tasarim Dergisi, 7(4), 736-743. https://doi.org/10.21923/jesd.553328.
- Al-Furjan, M.S.H., Habibi, M., Won Jung, D., Sadeghi, S., Safarpour, H., Tounsi, A. and Chen, G. (2020), "A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-020-01130-8.
- Alimoradzadeh, M., Salehi, M. and Esfarjani, S.M. (2019), "Nonlinear dynamic response of an axially functionally graded (AFG) beam resting on nonlinear elastic foundation subjected to moving load", Nonlinear Eng., 8(1), 250-260. https://doi.org/10.1515/nleng-2018-0051.
- Alimoradzadeh, M., Salehi, M. and Esfarjani, S.M. (2020), "Nonlinear vibration analysis of axially functionally graded microbeams based on nonlinear elastic foundation using modified couple stress theory", Period. Polytech. Mech. Eng., 64(2), 97-108. https://doi.org/10.3311/PPme.11684.
- Alimoradzadeh, M. and Akbas, S.D. (2021) "Superharmonic and subharmonic resonances of atomic force microscope subjected to crack failure mode based on the modified couple stress theory", Eur. Phys. J. Plus, 136(5), 1-20. https://doi.org/10.1140/epjp/s13360-021-01539-0.
- Ansari, M., Esmailzadeh, E. and Younesian, D. (2010), "Internal-external resonance of beams on non-linear viscoelastic foundation traversed by moving load", Nonlinear Dynam., 61(1), 163-182. https://doi.org/10.1007/s11071-009-9639-0.
- Babu Arumugam, A., Rajamohan, V., Bandaru, N., Sudhagar P.E. and Kumbhar, S.G. (2019), "Vibration analysis of a carbon nanotube reinforced uniform and tapered composite beams", Arch. Acoust., 44(02), 309-320. http://doi.org/10.24425/aoa.2019.128494.
- Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Bedia, E.A. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concrete, 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155.
- Civalek, O ., Dastjerdi, S., Akbas, S.D. and Akgoz, B. (2021a) "Vibration analysis of carbon nanotube-reinforced composite microbeams", Math. Method Appl. Sci., Special Issue Paper. https://doi.org/10.1002/mma.7069.
- Civalek, O ., Akbas, S.D., Akgoz, B. and Dastjerdi, S. (2021b), "Forced vibration analysis of composite beams reinforced by carbon nanotubes", Nanomaterials, 11(3), 571. https://doi.org/10.3390/nano11030571.
- Chu, H., Li, Y., Wang, C., Zhang, H., Li, D. (2020), "Recent investigations on nonlinear absorption properties of carbon nanotubes", Nanophotonics, 9(4), 761-781. https://doi.org/10.1515/nanoph-2020-0085.
- Ebrahimi F., Shaghaghi G.R., Boreiry M., (2016), "An investigation into the influence of thermal loading and surface effects on mechanical characteristics of nanotubes", Struct. Eng. Mech., 57(1), 179-200. http://doi.org/10.12989/sem.2016.57.1.179.
- Ebrahimi, F. and Dabbagh, A. (2018a), "Wave propagation analysis of magnetostrictive sandwich composite nanoplates via nonlocal strain gradient theory", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(22), 4180-4192. https://doi.org/10.1177/0954406217748687.
- Ebrahimi, F. and Dabbagh, A. (2018b), "Wave dispersion characteristics of embedded graphene platelets-reinforced composite microplates", Eur. Phys. J. Plus, 133(4), 1-13. https://doi.org/10.1140/epjp/i2018-11956-5.
- Ebrahimi, F. and Dabbagh, A. (2018c), "On wave dispersion characteristics of double-layered graphene sheets in thermal environments", J. Electromagnetic Wave Appl., 32(15), 1869-1888. https://doi.org/10.1080/09205071.2017.1417918.
- Fernandes, R., Mousavi, S. M. and El-Borgi, S. (2016), "Free and forced vibration nonlinear analysis of a microbeam using finite strain and velocity gradients theory", Acta Mech., 227(9), 2657-2670. https://doi.org/10.1007/s00707-016-1646-x.
- Ghayesh, M.H. (2009), "Stability characteristics of an axially accelerating string supported by an elastic foundation", Mech. Mach Theory, 44(10), 1964-1979. https://doi.org/10.1016/j.mechmachtheory.2009.05.004.
- Ghayesh, M.H. (2012), "Nonlinear dynamic response of a simply-supported Kelvin-Voigt viscoelastic beam, additionally supported by a nonlinear spring", Nonlinear Anal. Appl., 13(3), 1319-1333. https://doi.org/10.1016/j.nonrwa.2011.10.009.
- Ghayesh, M.H., Amabili, M. and Paidoussis, M.P. (2012a), "Thermo-mechanical phase-shift determination in Coriolis mass-flowmeters with added masses", J. Fluid Struct., 34, 1-13. https://doi.org/10.1016/j.jfluidstructs.2012.05.003.
- Ghayesh, M.H., Kazemirad, S. and Reid, T. (2012b), "Nonlinear vibrations and stability of parametrically exited systems with cubic nonlinearities and internal boundary conditions: A general solution procedure", Appl. Math. Modell., 36(7), 3299-3311. https://doi.org/10.1016/j.apm.2011.09.084.
- Ghayesh, M.H. (2018a), "Nonlinear vibrations of axially functionally graded Timoshenko tapered beams", J. Comput. Nonlinear Dyn., 13(4), 041002. https://doi.org/10.1115/1.4039191.
- Ghayesh, M.H. (2018b), "Nonlinear dynamics of multilayered microplates", J. Comput. Nonlinear Dyn., 13(2), 021006. https://doi.org/10.1115/1.4037596.
- Guo, X.Y. and Zhang, W. (2016), "Nonlinear vibrations of a reinforced composite plate with carbon nanotubes", Compos. Struct., 135, 96-108. https://doi.org/10.1016/j.compstruct.2015.08.063.
- Heidari, M. and Arvin, H. (2019), "Nonlinear free vibration analysis of functionally graded rotating composite Timoshenko beams reinforced by carbon nanotubes", J. Vib. Control, 25(14), 2063-2078. http://doi.org/10.1016/j.compstruct.2016.12.009.
- Huang, Y., Karami, B., Shahsavari, D. and Tounsi, A. (2021), "Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels", Arch. Civil Mech. Eng., 21(4), 1-15. https://doi.org/10.1007/s43452-021-00291-7.
- Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(56-58), 56-58. http://doi.org/10.1038/354056a0.
- Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams", Compos. Struct., 92(3), 676-683. https://doi.org/10.1016/j.compstruct.2009.09.024.
- Kocaturk, T. and Akbas, S.D. (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., 46(3), 417-431. https://doi.org/10.12989/sem.2013.46.3.417.
- Kong, S., Zhou, S., Nie, Z. and Wang, K. (2008), "The size-dependent natural frequency of Bernoulli-Euler micro-beams", Int. J. Eng. Sci., 46(5), 427-437. https://doi.org/10.1016/j.ijengsci.2007.10.002.
- Kumar, Y., Gupta, A. and Tounsi, A. (2021), "Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model", Adv. Nano Res., 11(1), 1-17. https://doi.org/10.12989/anr.2021.11.1.001.
- Li, Y.H., Wei, J., Zhang, X., Xu, C., Wu, D., Lu, L. and Wei, B. (2002), "Mechanical and electrical properties of carbon nanotube ribbons", Chem. Phys. Lett., 365(1-2), 95-100. https://doi.org/10.1016/S0009-2614(02)01434-3.
- Mamidi, N., Leija, H. M., Diabb, J.M., Lopez Romo, I., Hernandez, D., Castrejon, J.V., Romero, O.M., Barrera, E.V. and Zuniga, A.E. (2017), "C ytotoxicity evaluation of unfunctionalized multiwall carbon nanotubes-ultrahigh molecular weight polyethylene nanocomposites", J. Biomed. Mater. Res. A, 105(11), 3042-3049. https://doi.org/10.1002/jbm.a.36168.
- Mamidi, N. (2019), "Cytotoxicity evaluation of carbon nanotubes for biomedical and tissue engineering applications", Perspect. Carbon Nanotub, 12. https://doi.org/10.5772/intechopen.85899.
- Mamidi, N., Delgadillo, R.M.V. and Castrejon, J.V. (2021), "Unconventional and facile production of stimuli-responsive multifunctional system for simultaneous drug delivery and environmental remediation", Environ. Sci. Nano, 8(7), 2081-2097. https://doi.org/10.1039/D1EN00354B.
- Nayfeh, A.H., Mook, D.T. and Holmes, P. (1980), "Nonlinear oscillations", ASME. J. Appl. Mech, 47(3), 692. https://doi.org/10.1115/1.3153771.
- Ponnusami, S.A., Gupta, M. and Harursampath, D. (2019), "Asymptotic modeling of nonlinear bending and buckling behavior of carbon nanotubes", AIAA J., 57(10), 4132-4140. https://doi.org/10.2514/1.J057564.
- Rafiee, M., He, X.Q. and Liew, K.M. (2014), "Non-linear dynamic stability of piezoelectric functionally graded carbon nanotube-reinforced composite plates with initial geometric imperfection", Int. J. Non-Linear Mech., 59, 37-51. https://doi.org/10.1016/j.ijnonlinmec.2013.10.011
- Rao, S.S. (2007), Vibration of Continuous Systems, Wiley, New York, U.S.A.
- Ruoff, R.S. and Lorents, D.C. (1995), "Mechanical and thermal properties of carbon nanotubes", Carbon, 33(7), 925-930. https://doi.org/10.1016/0008-6223(95)00021-5.
- Salvetat, J.P., Bonard, J.M., Thomson, N.H., Kulik, A.J., Forro, L., Benoit, W. and Zuppiroli, L. (1999), "Mechanical properties of carbon nanotubes", Appl. Phys. A, 69(3), 255-260. https://doi.org/10.1007/s003390050999.
- Shafiei, H. and Setoodeh, A.R. (2017), "Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation", Steel Compos. Struct., 24(1), 65-77. http://doi.org/10.12989/scs.2017.24.1.065.
- Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.
- Shi, Z., Yao, X., Pang, F. and Wang, Q. (2017), "An exact solution for the free-vibration analysis of functionally graded carbon-nanotube-reinforced composite beams with arbitrary boundary conditions", Sci. Rep., 7(1), 1-18. https://doi.org/10.1038/s41598-017-12596-w.
- Simsek, M. (2014), "Nonlinear static and free vibration analysis of microbeams based on the nonlinear elastic foundation using modified couple stress theory and He's variational method", Compos. Struct., 112, 264-272. https://doi.org/10.1016/j.compstruct.2014.02.010.
- Tagrara, S.H., Benachour, A, Bouiadjra M.B., Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., 19(5), 1259-1277. http://doi.org/10.12989/scs.2015.19.5.1259.
- Thang, P.T., Nguyen, T.T. and Lee, J. (2017), "A new approach for nonlinear buckling analysis of imperfect functionally graded carbon nanotube-reinforced composite plates", Compos. Part B Eng., 127, 166-174. http://doi.org/10.1016/j.compositesb.2016.12.002.
- Ton-That, H.L. (2020), "The linear and nonlinear bending analyses of functionally graded carbon nanotube-reinforced composite plates based on the novel four-node quadrilateral element", Eur. J. Comput. Mech., 139-172. https://doi.org/10.13052/ejcm2642-2085.2915.
- Tornabene, F., Bacciocchi, M., Fantuzzi, N. and Reddy, J.N. (2019), "Multiscale approach for three-phase CNT/polymer/fiber laminated nanocomposite structures", Polym. Compos., 40(S1), 102-126. https://doi.org/10.1002/pc.24520.
- Van Do, V.N., Jeon, J.T. and Lee, C.H. (2020), "Dynamic analysis of carbon nanotube reinforced composite plates by using Bezier extraction based isogeometric finite element combined with higher-order shear deformation theory", Mech. Mater., 142, 103307. http://doi.org/10.1016/j.mechmat.2019.103307.
- Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Comput. Mater. Sci., 71, 201-208. http://doi.org/10.1016/j.commatsci.2013.01.028.
- Wu, C.P., Chen, Y.H., Hong, Z.L. and Lin, C.H. (2018), "Nonlinear vibration analysis of an embedded multi-walled carbon nanotube", Adv. Nano Res., 6(2), 163-182. https://doi.org/10.12989/anr.2018.6.2.163.
- Yakobson, B.I. and Avouris, P. (2001), "Mechanical properties of carbon nanotubes", Carbon Nanotub., 287-327. https://doi.org/10.1007/3-540-39947-X_12.
- Yas, M.H. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Pres. Ves. Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012.
- Zavala, J.M.D., Gutierrez, H.M.L., Segura-Cardenas, E., Mamidi, N., Morales-Avalos, R., Villela-Castrejon, J. and Elias-Zuniga, A. (2021), "Manufacture and mechanical properties of knee implants using SWCNTs/UHMWPE composites", J. Mech. Behav. Biomed. Mater., 120, 104554. https://doi.org/10.1016/j.jmbbm.2021.104554.