DOI QR코드

DOI QR Code

Superharmonic and subharmonic resonances of a carbon nanotube-reinforced composite beam

  • Alimoradzadeh, M. (Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University) ;
  • Akbas, S.D. (Department of Civil Engineering, Bursa Technical University)
  • Received : 2021.09.12
  • Accepted : 2022.01.04
  • Published : 2022.04.25

Abstract

This paper presents an investigation about superharmonic and subharmonic resonances of a carbon nanotube reinforced composite beam subjected to lateral harmonic load with damping effect based on the modified couple stress theory. As reinforcing phase, three different types of single walled carbon nanotubes (CNTs) distribution are considered through the thickness in polymeric matrix. The governing nonlinear dynamic equation is derived based on the von Kármán nonlinearity with using of Hamilton's principle. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. Effects of different patterns of reinforcement, volume fraction, excitation force and the length scale parameter on the frequency-response curves of the carbon nanotube reinforced composite beam are investigated. The results show that volume fraction and the distribution of CNTs play an important role on superharmonic and subharmonic resonances of the carbon nanotube reinforced composite beams.

Keywords

References

  1. Akbas, S.D. (2016a), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125.
  2. Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3),579-599. https://doi.org/10.12989/sem.2016.59.3.579.
  3. Akbas, S.D. (2016c), "Static analysis of a nano plate by using generalized differential quadrature method", Int. J. Eng. Appl. Sci., 8(2), 30-39. https://doi.org/10.24107/ijeas.252143.
  4. Akbas, S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(3),1750033. https://doi.org/10.1142/S021945541750033X.
  5. Akbas S.D. (2017b), Static, Vibration, and Buckling Analysis of Nanobeams, Nanomechanics, InTech, Rijeka, Croatia.
  6. Akbas, S.D. (2017c), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009.
  7. Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039.
  8. Akbas, S.D. (2018b), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(8), 392. https://doi.org/10.1007/s40430-018-1315-1.
  9. Akbas, S.D. (2018c), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219-242. https://doi.org/10.12989/anr.2018.6.3.219.
  10. Akbas, S.D. (2019a) "Axially forced vibration analysis of cracked a nanorod", J. Comput. Appl. Mech., 5(2), 477-485. https://doi.org/10.22059/JCAMECH.2019.281285.392.
  11. Akbas, S.D. (2019b) "Longitudinal forced vibration analysis of porous a nanorod", Muhendislik Bilimleri ve Tasarim Dergisi, 7(4), 736-743. https://doi.org/10.21923/jesd.553328.
  12. Al-Furjan, M.S.H., Habibi, M., Won Jung, D., Sadeghi, S., Safarpour, H., Tounsi, A. and Chen, G. (2020), "A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-020-01130-8.
  13. Alimoradzadeh, M., Salehi, M. and Esfarjani, S.M. (2019), "Nonlinear dynamic response of an axially functionally graded (AFG) beam resting on nonlinear elastic foundation subjected to moving load", Nonlinear Eng., 8(1), 250-260. https://doi.org/10.1515/nleng-2018-0051.
  14. Alimoradzadeh, M., Salehi, M. and Esfarjani, S.M. (2020), "Nonlinear vibration analysis of axially functionally graded microbeams based on nonlinear elastic foundation using modified couple stress theory", Period. Polytech. Mech. Eng., 64(2), 97-108. https://doi.org/10.3311/PPme.11684.
  15. Alimoradzadeh, M. and Akbas, S.D. (2021) "Superharmonic and subharmonic resonances of atomic force microscope subjected to crack failure mode based on the modified couple stress theory", Eur. Phys. J. Plus, 136(5), 1-20. https://doi.org/10.1140/epjp/s13360-021-01539-0.
  16. Ansari, M., Esmailzadeh, E. and Younesian, D. (2010), "Internal-external resonance of beams on non-linear viscoelastic foundation traversed by moving load", Nonlinear Dynam., 61(1), 163-182. https://doi.org/10.1007/s11071-009-9639-0.
  17. Babu Arumugam, A., Rajamohan, V., Bandaru, N., Sudhagar P.E. and Kumbhar, S.G. (2019), "Vibration analysis of a carbon nanotube reinforced uniform and tapered composite beams", Arch. Acoust., 44(02), 309-320. http://doi.org/10.24425/aoa.2019.128494.
  18. Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Bedia, E.A. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concrete, 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155.
  19. Civalek, O ., Dastjerdi, S., Akbas, S.D. and Akgoz, B. (2021a) "Vibration analysis of carbon nanotube-reinforced composite microbeams", Math. Method Appl. Sci., Special Issue Paper. https://doi.org/10.1002/mma.7069.
  20. Civalek, O ., Akbas, S.D., Akgoz, B. and Dastjerdi, S. (2021b), "Forced vibration analysis of composite beams reinforced by carbon nanotubes", Nanomaterials, 11(3), 571. https://doi.org/10.3390/nano11030571.
  21. Chu, H., Li, Y., Wang, C., Zhang, H., Li, D. (2020), "Recent investigations on nonlinear absorption properties of carbon nanotubes", Nanophotonics, 9(4), 761-781. https://doi.org/10.1515/nanoph-2020-0085.
  22. Ebrahimi F., Shaghaghi G.R., Boreiry M., (2016), "An investigation into the influence of thermal loading and surface effects on mechanical characteristics of nanotubes", Struct. Eng. Mech., 57(1), 179-200. http://doi.org/10.12989/sem.2016.57.1.179.
  23. Ebrahimi, F. and Dabbagh, A. (2018a), "Wave propagation analysis of magnetostrictive sandwich composite nanoplates via nonlocal strain gradient theory", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(22), 4180-4192. https://doi.org/10.1177/0954406217748687.
  24. Ebrahimi, F. and Dabbagh, A. (2018b), "Wave dispersion characteristics of embedded graphene platelets-reinforced composite microplates", Eur. Phys. J. Plus, 133(4), 1-13. https://doi.org/10.1140/epjp/i2018-11956-5.
  25. Ebrahimi, F. and Dabbagh, A. (2018c), "On wave dispersion characteristics of double-layered graphene sheets in thermal environments", J. Electromagnetic Wave Appl., 32(15), 1869-1888. https://doi.org/10.1080/09205071.2017.1417918.
  26. Fernandes, R., Mousavi, S. M. and El-Borgi, S. (2016), "Free and forced vibration nonlinear analysis of a microbeam using finite strain and velocity gradients theory", Acta Mech., 227(9), 2657-2670. https://doi.org/10.1007/s00707-016-1646-x.
  27. Ghayesh, M.H. (2009), "Stability characteristics of an axially accelerating string supported by an elastic foundation", Mech. Mach Theory, 44(10), 1964-1979. https://doi.org/10.1016/j.mechmachtheory.2009.05.004.
  28. Ghayesh, M.H. (2012), "Nonlinear dynamic response of a simply-supported Kelvin-Voigt viscoelastic beam, additionally supported by a nonlinear spring", Nonlinear Anal. Appl., 13(3), 1319-1333. https://doi.org/10.1016/j.nonrwa.2011.10.009.
  29. Ghayesh, M.H., Amabili, M. and Paidoussis, M.P. (2012a), "Thermo-mechanical phase-shift determination in Coriolis mass-flowmeters with added masses", J. Fluid Struct., 34, 1-13. https://doi.org/10.1016/j.jfluidstructs.2012.05.003.
  30. Ghayesh, M.H., Kazemirad, S. and Reid, T. (2012b), "Nonlinear vibrations and stability of parametrically exited systems with cubic nonlinearities and internal boundary conditions: A general solution procedure", Appl. Math. Modell., 36(7), 3299-3311. https://doi.org/10.1016/j.apm.2011.09.084.
  31. Ghayesh, M.H. (2018a), "Nonlinear vibrations of axially functionally graded Timoshenko tapered beams", J. Comput. Nonlinear Dyn., 13(4), 041002. https://doi.org/10.1115/1.4039191.
  32. Ghayesh, M.H. (2018b), "Nonlinear dynamics of multilayered microplates", J. Comput. Nonlinear Dyn., 13(2), 021006. https://doi.org/10.1115/1.4037596.
  33. Guo, X.Y. and Zhang, W. (2016), "Nonlinear vibrations of a reinforced composite plate with carbon nanotubes", Compos. Struct., 135, 96-108. https://doi.org/10.1016/j.compstruct.2015.08.063.
  34. Heidari, M. and Arvin, H. (2019), "Nonlinear free vibration analysis of functionally graded rotating composite Timoshenko beams reinforced by carbon nanotubes", J. Vib. Control, 25(14), 2063-2078. http://doi.org/10.1016/j.compstruct.2016.12.009.
  35. Huang, Y., Karami, B., Shahsavari, D. and Tounsi, A. (2021), "Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels", Arch. Civil Mech. Eng., 21(4), 1-15. https://doi.org/10.1007/s43452-021-00291-7.
  36. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(56-58), 56-58. http://doi.org/10.1038/354056a0.
  37. Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams", Compos. Struct., 92(3), 676-683. https://doi.org/10.1016/j.compstruct.2009.09.024.
  38. Kocaturk, T. and Akbas, S.D. (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., 46(3), 417-431. https://doi.org/10.12989/sem.2013.46.3.417.
  39. Kong, S., Zhou, S., Nie, Z. and Wang, K. (2008), "The size-dependent natural frequency of Bernoulli-Euler micro-beams", Int. J. Eng. Sci., 46(5), 427-437. https://doi.org/10.1016/j.ijengsci.2007.10.002.
  40. Kumar, Y., Gupta, A. and Tounsi, A. (2021), "Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model", Adv. Nano Res., 11(1), 1-17. https://doi.org/10.12989/anr.2021.11.1.001.
  41. Li, Y.H., Wei, J., Zhang, X., Xu, C., Wu, D., Lu, L. and Wei, B. (2002), "Mechanical and electrical properties of carbon nanotube ribbons", Chem. Phys. Lett., 365(1-2), 95-100. https://doi.org/10.1016/S0009-2614(02)01434-3.
  42. Mamidi, N., Leija, H. M., Diabb, J.M., Lopez Romo, I., Hernandez, D., Castrejon, J.V., Romero, O.M., Barrera, E.V. and Zuniga, A.E. (2017), "C ytotoxicity evaluation of unfunctionalized multiwall carbon nanotubes-ultrahigh molecular weight polyethylene nanocomposites", J. Biomed. Mater. Res. A, 105(11), 3042-3049. https://doi.org/10.1002/jbm.a.36168.
  43. Mamidi, N. (2019), "Cytotoxicity evaluation of carbon nanotubes for biomedical and tissue engineering applications", Perspect. Carbon Nanotub, 12. https://doi.org/10.5772/intechopen.85899.
  44. Mamidi, N., Delgadillo, R.M.V. and Castrejon, J.V. (2021), "Unconventional and facile production of stimuli-responsive multifunctional system for simultaneous drug delivery and environmental remediation", Environ. Sci. Nano, 8(7), 2081-2097. https://doi.org/10.1039/D1EN00354B.
  45. Nayfeh, A.H., Mook, D.T. and Holmes, P. (1980), "Nonlinear oscillations", ASME. J. Appl. Mech, 47(3), 692. https://doi.org/10.1115/1.3153771.
  46. Ponnusami, S.A., Gupta, M. and Harursampath, D. (2019), "Asymptotic modeling of nonlinear bending and buckling behavior of carbon nanotubes", AIAA J., 57(10), 4132-4140. https://doi.org/10.2514/1.J057564.
  47. Rafiee, M., He, X.Q. and Liew, K.M. (2014), "Non-linear dynamic stability of piezoelectric functionally graded carbon nanotube-reinforced composite plates with initial geometric imperfection", Int. J. Non-Linear Mech., 59, 37-51. https://doi.org/10.1016/j.ijnonlinmec.2013.10.011
  48. Rao, S.S. (2007), Vibration of Continuous Systems, Wiley, New York, U.S.A.
  49. Ruoff, R.S. and Lorents, D.C. (1995), "Mechanical and thermal properties of carbon nanotubes", Carbon, 33(7), 925-930. https://doi.org/10.1016/0008-6223(95)00021-5.
  50. Salvetat, J.P., Bonard, J.M., Thomson, N.H., Kulik, A.J., Forro, L., Benoit, W. and Zuppiroli, L. (1999), "Mechanical properties of carbon nanotubes", Appl. Phys. A, 69(3), 255-260. https://doi.org/10.1007/s003390050999.
  51. Shafiei, H. and Setoodeh, A.R. (2017), "Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation", Steel Compos. Struct., 24(1), 65-77. http://doi.org/10.12989/scs.2017.24.1.065.
  52. Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.
  53. Shi, Z., Yao, X., Pang, F. and Wang, Q. (2017), "An exact solution for the free-vibration analysis of functionally graded carbon-nanotube-reinforced composite beams with arbitrary boundary conditions", Sci. Rep., 7(1), 1-18. https://doi.org/10.1038/s41598-017-12596-w.
  54. Simsek, M. (2014), "Nonlinear static and free vibration analysis of microbeams based on the nonlinear elastic foundation using modified couple stress theory and He's variational method", Compos. Struct., 112, 264-272. https://doi.org/10.1016/j.compstruct.2014.02.010.
  55. Tagrara, S.H., Benachour, A, Bouiadjra M.B., Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., 19(5), 1259-1277. http://doi.org/10.12989/scs.2015.19.5.1259.
  56. Thang, P.T., Nguyen, T.T. and Lee, J. (2017), "A new approach for nonlinear buckling analysis of imperfect functionally graded carbon nanotube-reinforced composite plates", Compos. Part B Eng., 127, 166-174. http://doi.org/10.1016/j.compositesb.2016.12.002.
  57. Ton-That, H.L. (2020), "The linear and nonlinear bending analyses of functionally graded carbon nanotube-reinforced composite plates based on the novel four-node quadrilateral element", Eur. J. Comput. Mech., 139-172. https://doi.org/10.13052/ejcm2642-2085.2915.
  58. Tornabene, F., Bacciocchi, M., Fantuzzi, N. and Reddy, J.N. (2019), "Multiscale approach for three-phase CNT/polymer/fiber laminated nanocomposite structures", Polym. Compos., 40(S1), 102-126. https://doi.org/10.1002/pc.24520.
  59. Van Do, V.N., Jeon, J.T. and Lee, C.H. (2020), "Dynamic analysis of carbon nanotube reinforced composite plates by using Bezier extraction based isogeometric finite element combined with higher-order shear deformation theory", Mech. Mater., 142, 103307. http://doi.org/10.1016/j.mechmat.2019.103307.
  60. Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Comput. Mater. Sci., 71, 201-208. http://doi.org/10.1016/j.commatsci.2013.01.028.
  61. Wu, C.P., Chen, Y.H., Hong, Z.L. and Lin, C.H. (2018), "Nonlinear vibration analysis of an embedded multi-walled carbon nanotube", Adv. Nano Res., 6(2), 163-182. https://doi.org/10.12989/anr.2018.6.2.163.
  62. Yakobson, B.I. and Avouris, P. (2001), "Mechanical properties of carbon nanotubes", Carbon Nanotub., 287-327. https://doi.org/10.1007/3-540-39947-X_12.
  63. Yas, M.H. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Pres. Ves. Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012.
  64. Zavala, J.M.D., Gutierrez, H.M.L., Segura-Cardenas, E., Mamidi, N., Morales-Avalos, R., Villela-Castrejon, J. and Elias-Zuniga, A. (2021), "Manufacture and mechanical properties of knee implants using SWCNTs/UHMWPE composites", J. Mech. Behav. Biomed. Mater., 120, 104554. https://doi.org/10.1016/j.jmbbm.2021.104554.