Acknowledgement
The data used in this study was kindly provided by Department of Data Solution, Open Government Data of Thailand, National Statistical Office of Thailand and Thai Meteorological Department. The authors would like to thank the government data solution project team for their collaborative support and guidance during this study. This research was financially supported by the new strategic research project (P2P), Walailak University, Thailand.
References
- Abba, S.I., Hadi, S.J., Sammen, S.S., Salih, S.Q., Abdulkadir, R.A., Pham, Q.B. and Yaseen, Z.M. (2020a), "Evolutionary computational intelligence algorithm coupled with self-tuning predictive model for water quality index determination", J. Hydrol., 587, 124974. https://doi.org/10.1016/j.jhydrol.2020.124974.
- Abba S.I., Pham, Q.B., Saini, G., Linh, N.T.T., Ahmed, A.N., Mohajane, M., Khaledian, M., Abdulkadir, R.A. and Bach, Q.V. (2020b), "Implementation of data intelligence models coupled with ensemble machine learning for prediction of water quality index", Environ. Sci. Pollut. Res., 27, 41524-41539. https://doi.org/10.1007/s11356-020-09689-x.
- Adamowski, J. and Karapataki, C. (2010), "Comparison of multivariate regression and artificial neural networks for peak urban water demand forecasting: evaluation of different ANN learning algorithms", J. Hydrol. Eng., 15(10), 729-743. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000245.
- Agarwal, S., Dandge, S.S. and Chakraborty, S. (2020), "A support vector machine-based prediction model for electrochemical machining process", Karbala Int. J. Mod. Sci., 6(2), 164-174. https://doi.org/10.33640/2405-609X.1508.
- Ahmad, T. and Chen, H. (2018), "Utility companies strategy for short-term energy demand forecasting using machine learning based models", Sustain. Cities Soc., 39, 401-417. https://doi.org/10.1016/j.scs.2018.03.002.
- Al-Hamad, M.Y. and Qamber, I.S. (2019), "GCC electrical long-term peak load forecasting modeling using ANFIS and MLR methods", Arab J. Basic Appl. Sci., 26(1), 269-282. https://doi.org/10.1080/25765299.2019.1565464.
- Altunkaynak, A. and Nigussie, T.A. (2018), "Monthly water demand prediction using wavelet transform, first-order differencing and linear detrending techniques based on multilayer perceptron models", Urban Water J., 15(2), 177-181. https://doi.org/10.1080/1573062X.2018.1424219.
- Anand, A. and Suganthi, L. (2018), "Hybrid GA-PSO optimization of artificial neural network for forecasting electricity demand", Energies, 11(4), 728. https://doi.org/10.3390/en11040728.
- Arora, M., Dhawan, S. and Singh, K. (2021), "Improved performance of machine learning algorithms for prognosis of cervical cancer", Adv. Comput. Des., 6(3), 191-205. http://doi.org/10.12989/acd.2021.6.3.191.
- Bata, M., Carriveau, R. and Ting, D.S.K. (2020), "Short-term water demand forecasting using hybrid supervised and unsupervised machine learning model", Smart Water, 5, 2. https://doi.org/10.1186/s40713-020-00020-y.
- Benitez, R., Ortiz-Caraballo, C., Preciado, J.C., Conejero, J.M., Figueroa, F.S. and Rubio-Largo, A. (2019), "A short-term databased water consumption prediction approach", Energies, 12(12), 2359. https://doi.org/10.3390/en12122359.
- Campos, D.S., Tadano, Y.S., Alves, T.A., Siqueira, H.V. and Marinho, M.H.N. (2020), "Unorganized machines and linear multivariate regression model applied to atmospheric pollutant forecasting", Acta Sci. Technol., 42(1), e48203. https://doi.org/10.4025/actascitechnol.v42i1.48203.
- Candelieri, A., Soldi, D. and Archetti, F. (2015), "Short-term forecasting of hourly water consumption by using automatic metering readers data", Procedia Eng., 119, 844-853. https://doi.org/10.1016/j.proeng.2015.08.948.
- Cetinkaya, A. and Baykan, O.K. (2020), "Prediction of middle school students' programming talent using artificial neural networks", Eng. Sci. Technol., 23(6), 1301-1307. https://doi.org/10.1016/j.jestch.2020.07.005.
- Davis, J.H. (2011), Multiple linear regression. In: Davis, J.H. (Ed.), Statistics for Compensation: A Practical Guide to Compensation Analysis, John Wiley & Sons, New Jersey, U.S.A. https://doi-org /10.1002/9780470946428.ch17.
- Digital Government Development Agency (2019), Open government data of Thailand. https://data.go.th.
- de Souza Groppo, G., Costa, M.A. and Libanio, M. (2019), "Predicting water demand: A review of the methods employed and future possibilities", Water Supply, 19(8), 2179-2198. https://doi.org/10.2166/ws.2019.122.
- Donkor, E.A., Mazzuchi, T.H., Soyer, R. and Roberson, J.A. (2014), "Urban water demand forecasting: Review of methods and models", J. Water Resour. Plan. Manag., 140, 146-159. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000314.
- Farizawani, A.G., Puteh, M., Marina, Y. and Rivaie, A. (2020), "A review of artificial neural network learning rule based on multiple variant of conjugate gradient approaches", J. Phys. Conf. Ser., 1529(2), 022040. https://doi.org/10.1088/1742-6596/1529/2/022040.
- Ghalehkhondabi, I., Ardjmand, E., Young, W.A. and Weckman, G.R. (2017), "Water demand forecasting: Review of soft computing methods", Environ. Monit. Assess., 189, 313. https://doi.org/10.1007/s10661-017-6030-3.
- Ghani, I.M.M. and Ahmad, S. (2010), "Stepwise multiple regression method to forecast fish landing", Procedia Soc. Behav. Sci., 8, 549-554. https://doi.org/10.1016/j.sbspro.2010.12.076.
- Guo, G., Liu, S., Wu, Y., Li, J., Zhou, R. and Zhu, X. (2018), "Short-term water demand forecast based on deep learning method", J. Water Resour. Plan. Manag., 144(12), 04018076. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000992.
- Herrera, M., Torgo, L., Izquierdo, J. and Perez-Garcia, R. (2010), "Predictive models for forecasting hourly urban water demand", J. Hydrol., 387(1-2), 141-150. https://doi.org/10.1016/j.jhydrol.2010.04.005.
- Liu, H. and Cocea, M. (2017), "Semi-random partitioning of data into training and test sets in granular computing context", Granul. Comput., 2, 357-386. https://doi.org/10.1007/s41066-017-0049-2.
- Mouatadid, S. and Adamowki, J. (2016), "Using extreme learning machines for short-term urban water demand forecasting", Urban Water J., 14(6), 630-638. https://doi.org/10.1515/jwld-2016-0004.
- National Statistical Office (2019), Statistical data. http://web.nso.go.th.
- National Strategy Secretariat Office (2019), National strategy 2018-2037 (summary). https://www.moac.go.th/pyp-dwl-files-402791791893.
- Olyaie, E., Abyaneh, H.Z. and Danandeh Mehr, A.D. (2017), "A comparative analysis among computational intelligence techniques for dissolved oxygen prediction in Delaware River", Geosci. Front., 8(3), 517-527. https://doi.org/10.1016/j.gsf.2016.04.007.
- Oyebode, O. and Ighravwe, D.E. (2019), "Urban water demand forecasting: A comparative evaluation of conventional and soft computing techniques", Resources, 8(3), 156. https://doi.org/10.3390/resources8030156.
- Oyebode, O., Babatunde, D.E., Monyei, C.G. and Babatunde, O.M. (2019), "Water demand modelling using evolutionary computation techniques: Integrating water equity and justice for realization of the sustainable development goals", Heliyon, 5(11), e02796. https://doi.org/10.1016/j.heliyon.2019.e02796.
- Pahlavan-Rad, M.R., Dahmardeh, K., Hadizadeh, M., Keykha, G., Mohammadnia, N., Gangali, M., Keikha, M., Davatgar, N. and Brungard, C. (2020), "Prediction of soil water infiltration using multiple linear regression and random forest in a dry flood plain, eastern Iran", Catena, 194, 104715. https://doi.org/10.1016/j.catena.2020.104715.
- Romano, M. and Kapelan, Z. (2014), "Adaptive water demand forecasting for near real-time management of smart water distribution systems", Environ. Model. Softw., 60, 265-276. https://doi.org/10.1016/j.envsoft.2014.06.016.
- Sahu, K.K., Nayak, S.C. and Behera, H.S. (2021), "Multi-step-ahead exchange rate forecasting for South Asian countries using multi-verse optimized multiplicative functional link neural networks", Karbala Int. J. Mod. Sci., 7(1), 48-60. https://doi.org/10.33640/2405-609X.2278.
- Sattar, A.M.A., Ertugrul, O.F., Gharabaghi, B., McBean, E.A. and Cao, J. (2019), "Extreme learning machine model for water network management", Neural Comput. Appl., 31(1), 157-169. https://doi.org/10.1007/s00521-017-2987-7.
- Seo, Y., Kwon, S. and Choi, Y. (2018), "Short-term water demand forecasting model combining variational mode decomposition and extreme learning machine", Hydrology, 5(4), 54. https://doi.org/10.3390/hydrology5040054.
- Sirisathitkul, Y., Thanathamathee, P. and Aekwarangkoon, S. (2019), "Predictive apriori algorithm in youth suicide prevention by screening depressive symptoms from patient health questionnaire-9", TEM J., 8(4), 1449-1455. https://dx.doi.org/10.18421/TEM84-49.
- Smolak, K., Kasieczka, B., Fialkiewicz, W., Rohm, W., Sila-Nowicka, K. and Kopanczyk, K. (2020), "Applying human mobility and water consumption data for short-term water demand forecasting using classical and machine learning models", Urban Water J., 17(1), 32-42. https://doi.org/10.1080/1573062X.2020.1734947.
- Stampoulis, D., Damavandi, H.G., Boscovic, D. and Sabo, J. (2021), "Using satellite remote sensing and machine learning techniques towards precipitation prediction and vegetation classification", J. Environ. Inform., 37(1), 1-15. https://doi.org/10.3808/jei.202000427.
- Thai Meteorological Department (2019), Thailand meteorological department API: TMDAPI in Thailand climate standard normal value 1981-2010. https://data.tmd.go.th/api/index1.php.
- Thinakaran, K., Rajasekar, R., Santhi, K. and Nalini, M. (2020), "Predicting the 2-dimensional airfoil by using machine learning methods", Adv. Comput. Des., 5(3), 291-304. http://doi.org/10.12989/acd.2020.5.3.291.
- UN Water (2020), UN World Water Development Report 2020. https://www.unwater.org/publications/world-water-development-report-2020.
- Wei, H.W., Hassan, M., Che, Y., Peng, Q.K., Wang, Q., Su, Y.L. and Xie, B. (2021), "Spatio-temporal characteristics and source apportionment of water pollutants in upper reaches of Maotiao River, Southwest of China, from 2003 to 2015", J. Environ. Inform., 37(2), 93-106. http://doi.org/10.3808/jei.201900415.
- Wongso, E., Nateghi, R., Zaitchik, B., Quiring, S. and Kumar, R. (2020), "A data-driven framework to characterize state-level water use in the United States", Water Resour. Res., 56(9), e2019WR024894. https://doi.org/10.1029/2019WR024894.
- Wu, L. and Zhou, H. (2010), "Urban water demand forecasting based on HP filter and fuzzy neural network", J. Hydroinformatics, 12(2), 172-184. https://doi.org/10.2166/hydro.2009.082.
- Xiao, Y., Fang, L. and Hipel, K.W. (2021), "Conservation-targeted hydrologic-economic models for water demand management", J. Environ. Inform., 37(1), 49-61. http://doi.org/10.3808/jei.201900418.
- Yang, Y., Huang, T.T., Shi, Y.Z., Wendroth, O. and Liu, B.Y. (2021), "Comparing the performance of an autoregressive state-space approach to the linear regression and artificial neural network for streamflow estimation", J. Environ. Inform., 37(1), 36-48. https://doi.org/10.3808/jei.202000440.
- Zhong, H., Wang, J., Jia, H., Mu, Y. and Lv, S. (2019), "Vector field-based support vector regression for building energy consumption prediction", Appl. Energy, 242, 403-414. https://doi.org/10.1016/j.apenergy.2019.03.078.
- Zubaidi, S.L., Dooley, J., Al-Khaddar, R., Abdellatif, M., Al-Bugharbee, H. and Ortega-Martorell, S. (2018), "A novel approach for predicting monthly water demand by combining singular spectrum analysis with neural networks", J. Hydrol., 561, 136-145. https://doi.org/10.1016/j.jhydrol.2018.03.047.
- Zubaidi, S.L., Ortega-Martorell, S., Al-Bugharbee, H., Olier, I., Hashim, K.S., Gharghan, S.K., Kot, P. and Al-Khaddar, R. (2020a), "Urban water demand prediction for a city that suffers from climate change and population growth: Gauteng province case study", Water, 12(7), 1885. https://doi.org/10.3390/w12071885.
- Zubaidi, S.L., Ortega-Martorell, S., Kot, P., Al-Khaddar, R., Abdellatif, M., Gharghan, S.K., Ahmed, M.S. and Hashim, K.S. (2020b), "A method for predicting long-term municipal water demands under climate change", Water Resour. Manag., 34(3), 1265-1279. https://doi.org/10.1007/s11269-020-02500-z.