DOI QR코드

DOI QR Code

Nonlinear finite element formulation for sliding cable structures considering frictional, thermal and pulley-dimension effects

  • Yang, Menggang (School of Civil Engineering, Central South University) ;
  • Chen, Shizai (School of Civil Engineering, Central South University) ;
  • Hu, Shangtao (School of Civil Engineering, Central South University)
  • Received : 2021.02.06
  • Accepted : 2022.01.21
  • Published : 2022.04.25

Abstract

This paper presents a refined finite element formulation for nonlinear static and dynamic analysis of sliding cable structures, overcoming the limitation of the existing approaches that neglect or approximate the friction, pulley dimension, temperature and geometric nonlinearity. A new family of elements with the same framework is proposed, consisting of the cable-pulley (CP) elements considering sliding friction, and the non-sliding cable-pulley (NSCP) elements considering static friction. Thereafter, the complete procedure of static and dynamic analysis using the proposed elements is developed, with the capability of accurately dealing with the friction at each pulley. Several examples are utilized to verify the validity and accuracy of the proposed elements and analysis strategy, and investigate the frictional, thermal and pulley-dimension effects as well. The numerical examples show that the results obtained in this work are in good accordance with the existing works when using the same approximations of friction, pulley dimension and temperature. By avoiding the approximations, the proposed formulation can be effectively adopted in predicting the more precise nonlinear responses of sliding cable structures.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. 51978667). This support is gratefully acknowledged.

References

  1. Ali, H.M. and Abdel-Ghaffar, A.M. (1995), "Modeling the nonlinear seismic behavior of cable-stayed bridges with passive control bearings", Comput. Struct., 54(3), 461-492. https://doi.org/10.1016/0045-7949(94)00353-5.
  2. Andreu, A., Gil, L. and Roca, P. (2006), "A new deformable catenary element for the analysis of cable net structures", Comput. Struct., 84, 1882-1890. https://doi.org/10.1016/j.compstruc.2006.08.021.
  3. Aufaure, M. (1993), "A finite element of cable passing through a pulley", Comput. Struct., 46(5), 807-812. https://doi.org/10.1016/0045-7949(93)90143-2.
  4. Aufaure, M. (2000), "A three-node cable element ensuring the continuity of the horizontal tension; a clamp-cable element", Comput. Struct., 74, 243-251. https://doi.org/10.1016/S0045-7949(99)00015-2.
  5. Bel Hadj Ali, N., Sychterz, A.C. and Smith, I.F.C. (2017), "A dynamic-relaxation formulation for analysis of cable structures with sliding-induced friction", Int. J. Solid. Struct., 126-127, 240-251. https://doi.org/10.1016/j.ijsolstr.2017.08.008.
  6. Bruno, D. and Leonardi, A. (1999), "Nonlinear structural models in cableway transport systems", Simul. Pract. Theory, 7(3), 207-218. https://doi.org/10.1016/S0928-4869(98)00024-X.
  7. Cai, J.G., Lim, J., Feng, J., Xu, Y.X. and Wang, K. (2012), "Elastic catenary cable element considering frictional slip effect", Sci. Chin. Tech. Sci., 55(6), 1489-1495. https://doi.org/10.1007/s11431-012-4833-6.
  8. Cao, H., Zhou, Y., Chen, Z. and Wahab, M.A. (2017), "Form-finding analysis of suspension bridges using an explicit iterative approach", Struct. Eng. Mech., 62(1), 85-95. https://doi.org/10.12989/sem.2017.62.1.085.
  9. Cao, L., Liu, J., Zhang, X. and Chen, Y.F. (2019), "Numerical study on the walking load based on inverted-pendulum model", Struct. Eng. Mech., 71(3), 245-255. https://doi.org/10.12989/sem.2019.71.3.245.
  10. Chen, S., Yang, M., Meng, D. and Hu, S. (2020), "Theoretical solution for multi-span continuous cable structures considering sliding", Int. J. Solid. Struct., 207, 42-54. https://doi.org/10.1016/j.ijsolstr.2020.09.024.
  11. Chen, Z.H., Wu, Y.J., Yin, Y. and Shan, C. (2010), "Formulation and application of multi-node sliding cable element for the analysis of suspen-dome structures", Finite. Elem. Anal. Des., 46(9), 743-750. https://doi.org/10.1016/j.finel.2010.04.003.
  12. Chen, Z.Q. and Agar, T.J.A. (1993), "Geometric nonlinear analysis of flexible spatial beam structures", Comput. Struct., 49(6), 1083-1094. https://doi.org/10.1016/0045-7949(93)90019-A.
  13. Chopra, A.K. (2017), Dynamics of Structures: Theory and Applications to Earthquake Engineering, Prentice Hall, Inc., New Jersey.
  14. Chung, K.S., Cho, J., Park, J.I. and Chang, S. (2011), "Three-dimensional elastic catenary cable element considering sliding effect", J. Eng. Mech., 137, 276-283. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000225.
  15. Coulibaly, J.B., Chanut, M.A., Lambert, S. and Nicot, F. (2018), "Sliding cable modeling: An attempt at a unified formulation", Int. J. Solid. Struct., 130-131, 1-10. https://doi.org/10.1016/j.ijsolstr.2017.10.025.
  16. Crusells-Girona, M., Filippou, F.C. and Taylor, R.L. (2017), "A mixed formulation for nonlinear analysis of cable structures", Comput. Struct., 186, 50-61. https://doi.org/10.1016/j.compstruc.2017.03.011.
  17. Gao, Q., Yang, M.G. and Qiao, J.D. (2017), "A multi-parameter optimization technique for prestressed concrete cable-stayed bridges considering prestress in girder", Struct. Eng. Mech., 64(5), 567-577. https://doi.org/10.12989/sem.2017.64.5.567.
  18. Guo, Y.L. and Cui, X.Q. (2003), "An unified analytical method for gliding cable structures-frozen-heated method", Eng. Mech., 20(4), 156-160. https://doi.org/10.3969/j.issn.1000-4750.2003.04.028
  19. Hincz, K. (2009), "Nonlinear analysis of cable net structures suspended from arches with block and tackle suspension system, taking into account the friction of the pulley", Int. J. Space Struct., 24(3), 143-152. https://doi.org/10.1260/026635109789867643.
  20. Impollonia, N., Ricciardi, G. and Saitta, F. (2011), "Statics of elastic cables under 3D point forces", Int. J. Solid. Struct., 48, 1268-1276. https://doi.org/10.1016/j.ijsolstr.2011.01.007.
  21. Irvine, H.M. (1992), Cable Structures, Dover Publications, New York.
  22. Jayaraman, H.B. and Knudson, W.C. (1981), "A curved element for the analysis of cable structures", Comput. Struct., 14(3-4), 325-333. https://doi.org/10.1016/0045-7949(81)90016-X.
  23. Ju, F. and Choo, Y.S. (2005), "Super element approach to cable passing through multiple pulleys", Int. J. Solid. Struct., 42(11), 3533-3547. https://doi.org/10.1016/j.ijsolstr.2004.10.014.
  24. Kan, Z., Peng, H. and Chen, B. (2019), "A simple linear complementarity approach for sliding cable modeling considering friction", Mech. Syst. Signal Pr., 130, 293-314. https://doi.org/10.1016/j.ymssp.2019.05.012.
  25. Kan, Z., Peng, H., Chen, B. and Zhong, W. (2018), "A sliding cable element of multibody dynamics with application to nonlinear dynamic deployment analysis of clustered tensegrity", Int. J. Solid. Struct., 130, 61-79. https://doi.org/10.1016/j.ijsolstr.2017.10.012.
  26. Lee, K.H., Choo, Y.S. and Ju, F. (2003), "Finite element modelling of frictional slip in heavy lift sling systems", Comput. Struct., 81, 2673-2690. https://doi.org/10.1016/S0045-7949(03)00333-X.
  27. Liang, X. and Mosalam, K.M. (2016), "Lyapunov stability and accuracy of direct integration algorithms applied to nonlinear dynamic problems", J. Eng. Mech., 142(5), 04016022. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001073.
  28. Liu, H. and Chen, Z. (2012a), "Influence of cable sliding on the stability of suspen-dome with stacked arches structures", Adv. Steel Constr., 8(1), 54-70.
  29. Liu, H. and Chen, Z. (2012b), "Structural behavior of the suspendome structures and the cable dome structures with sliding cable joints", Struct. Eng. Mech., 43(1), 53-70. https://doi.org/10.12989/sem.2012.43.1.053.
  30. Matsumoto, Y., Nishioka, T., Shiojiri, H. and Matsuzaki, K. (1978), "Dynamic design of footbridges", IABSE Proceedings.
  31. McDonald, B.M. and Peyrot, A.H. (1988), "Analysis of cables suspended in sheaves", J. Struct. Eng., 114(3), 693-706. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:3(693).
  32. Pauletti, R.M.O. and Pimenta, P.M. (1995), "Formulacao de um elemento finito de cabo incorporando o efeito do atrito (elemento de cabo escorregando)", Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria, 11, 565-576.
  33. Rezaiee-Pajand, M. and Hashemian, M. (2016), "Time integration method based on discrete transfer function", Int. J. Struct. Stab. Dyn., 16, 1550009. https://doi.org/10.1142/S0219455415500091.
  34. Rezaiee-Pajand, M. and Karimi-Rad, M. (2016), "A new explicit time integration scheme for nonlinear dynamic analysis", Int. J. Struct. Stab. Dyn., 16, 155005. https://doi.org/10.1142/S0219455415500546.
  35. Rezaiee-Pajand, M. and Mohammadi-khatami, M. (2021), "Nonlinear analysis of cable structures using the dynamic relaxation method", Front. Struct. Civil Eng., 15(1), 253-274. https://doi.org/10.1007/s11709-020-0639-y.
  36. Rezaiee-Pajand, M., Esfehani, S.A.H. and Ehsanmanesh, H. (2021), "An efficient weighted residual time integration family", Int. J. Struct. Stab. Dyn., 21(08), 2150106. https://doi.org/10.1142/S0219455421501066.
  37. Rezaiee-Pajand, M., Esfehani, S.A.H. and Karimi-Rad, M. (2016), "Highly accurate family of time integration method", Struct. Eng. Mech., 67(6), 603-616. https://doi.org/10.12989/sem.2016.67.6.603.
  38. Rezaiee-Pajand, M., Mokhtari, M. and Masoodi, A.R. (2018), "A novel cable element for nonlinear thermo-elastic analysis", Eng. Struct., 167, 431-444. https://doi.org/10.1016/j.engstruct.2018.04.022.
  39. Salehi Ahmad Abad, M., Shooshtari, A., Esmaeili, V. and Naghavi Riabi, A. (2013), "Nonlinear analysis of cable structures under general loadings", Finite Elem. Anal. Des., 73, 11-19. https://doi.org/10.1016/j.finel.2013.05.002.
  40. Such, M., Jimenez-Octavio J.R. and Carnicero, A. (2009), "An approach based on the catenary equation to deal with static analysis of three dimensional cable structures", Eng. Struct., 31, 2162-2170. https://doi.org/10.1016/j.engstruct.2009.03.018.
  41. Thai, H.T. and Kim, S.E. (2011), "Nonlinear static and dynamic analysis of cable structures", Finite Elem. Anal. Des., 47, 237-246. https://doi.org/10.1016/j.finel.2010.10.005.
  42. Vu, T., Lee, H. and Bui, Q. (2012), "Nonlinear analysis of cable-supported structures with a spatial catenary cable element", Struct. Eng. Mech., 43(5), 583-605. https://doi.org/10.12989/sem.2012.43.5.583.
  43. Wei, J.D. (2004), "Cable sliding at supports in cable structures", J. Southwest Jiaotong Univ. (English Ed.), 12(1), 56-60.
  44. Wei, J.D. and Xu, W.G. (2005), "Cable-pulley element to analyze pulley sliding on cable", Chin. J. Theor. Appl. Mech., 37(3), 322-328.
  45. Yang, M., Chen, Z. and Hua, X. (2010), "A new two-node catenary cable element for the geometrically non-linear analysis of cable-supported structures", J. Mech. Eng. Sci., 224, 1173-1183. https://doi.org/10.1243/09544062JMES1816.
  46. Yang, Y.B. and Tsay, J.Y. (2007), "Geometric nonlinear analysis of cable structures with a two-node cable element by generalized displacement control method", Int. J. Struct. Stab. Dyn., 7(4), 571-588. https://doi.org/10.1142/S0219455407002435.
  47. Yu, X.M., Chen, D.W. and Bai, Z.Z. (2018), "A new method for analysis of sliding cable structures in bridge engineering", J. Civil Eng., 22, 4483-4489. https://doi.org/10.1007/s12205-017-0151-7.
  48. Yu, Y., Chen, Z. and Yan, R. (2019), "Finite element modeling of cable sliding and its effect on dynamic response of cable-supported truss", Front. Struct. Civil Eng., 13, 1227-1242. https://doi.org/10.1007/s11709-019-0551-5.
  49. Zhou, B., Accorsi, M.L. and Leonard, J.W. (2004), "Finite element formulation for modeling sliding cable elements", Comput. Struct., 82(2-3), 271-280. https://doi.org/10.1016/j.compstruc.2003.08.006.