Acknowledgement
This work was supported by the National Natural Science Foundation of China (No. 51978667). This support is gratefully acknowledged.
References
- Ali, H.M. and Abdel-Ghaffar, A.M. (1995), "Modeling the nonlinear seismic behavior of cable-stayed bridges with passive control bearings", Comput. Struct., 54(3), 461-492. https://doi.org/10.1016/0045-7949(94)00353-5.
- Andreu, A., Gil, L. and Roca, P. (2006), "A new deformable catenary element for the analysis of cable net structures", Comput. Struct., 84, 1882-1890. https://doi.org/10.1016/j.compstruc.2006.08.021.
- Aufaure, M. (1993), "A finite element of cable passing through a pulley", Comput. Struct., 46(5), 807-812. https://doi.org/10.1016/0045-7949(93)90143-2.
- Aufaure, M. (2000), "A three-node cable element ensuring the continuity of the horizontal tension; a clamp-cable element", Comput. Struct., 74, 243-251. https://doi.org/10.1016/S0045-7949(99)00015-2.
- Bel Hadj Ali, N., Sychterz, A.C. and Smith, I.F.C. (2017), "A dynamic-relaxation formulation for analysis of cable structures with sliding-induced friction", Int. J. Solid. Struct., 126-127, 240-251. https://doi.org/10.1016/j.ijsolstr.2017.08.008.
- Bruno, D. and Leonardi, A. (1999), "Nonlinear structural models in cableway transport systems", Simul. Pract. Theory, 7(3), 207-218. https://doi.org/10.1016/S0928-4869(98)00024-X.
- Cai, J.G., Lim, J., Feng, J., Xu, Y.X. and Wang, K. (2012), "Elastic catenary cable element considering frictional slip effect", Sci. Chin. Tech. Sci., 55(6), 1489-1495. https://doi.org/10.1007/s11431-012-4833-6.
- Cao, H., Zhou, Y., Chen, Z. and Wahab, M.A. (2017), "Form-finding analysis of suspension bridges using an explicit iterative approach", Struct. Eng. Mech., 62(1), 85-95. https://doi.org/10.12989/sem.2017.62.1.085.
- Cao, L., Liu, J., Zhang, X. and Chen, Y.F. (2019), "Numerical study on the walking load based on inverted-pendulum model", Struct. Eng. Mech., 71(3), 245-255. https://doi.org/10.12989/sem.2019.71.3.245.
- Chen, S., Yang, M., Meng, D. and Hu, S. (2020), "Theoretical solution for multi-span continuous cable structures considering sliding", Int. J. Solid. Struct., 207, 42-54. https://doi.org/10.1016/j.ijsolstr.2020.09.024.
- Chen, Z.H., Wu, Y.J., Yin, Y. and Shan, C. (2010), "Formulation and application of multi-node sliding cable element for the analysis of suspen-dome structures", Finite. Elem. Anal. Des., 46(9), 743-750. https://doi.org/10.1016/j.finel.2010.04.003.
- Chen, Z.Q. and Agar, T.J.A. (1993), "Geometric nonlinear analysis of flexible spatial beam structures", Comput. Struct., 49(6), 1083-1094. https://doi.org/10.1016/0045-7949(93)90019-A.
- Chopra, A.K. (2017), Dynamics of Structures: Theory and Applications to Earthquake Engineering, Prentice Hall, Inc., New Jersey.
- Chung, K.S., Cho, J., Park, J.I. and Chang, S. (2011), "Three-dimensional elastic catenary cable element considering sliding effect", J. Eng. Mech., 137, 276-283. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000225.
- Coulibaly, J.B., Chanut, M.A., Lambert, S. and Nicot, F. (2018), "Sliding cable modeling: An attempt at a unified formulation", Int. J. Solid. Struct., 130-131, 1-10. https://doi.org/10.1016/j.ijsolstr.2017.10.025.
- Crusells-Girona, M., Filippou, F.C. and Taylor, R.L. (2017), "A mixed formulation for nonlinear analysis of cable structures", Comput. Struct., 186, 50-61. https://doi.org/10.1016/j.compstruc.2017.03.011.
- Gao, Q., Yang, M.G. and Qiao, J.D. (2017), "A multi-parameter optimization technique for prestressed concrete cable-stayed bridges considering prestress in girder", Struct. Eng. Mech., 64(5), 567-577. https://doi.org/10.12989/sem.2017.64.5.567.
- Guo, Y.L. and Cui, X.Q. (2003), "An unified analytical method for gliding cable structures-frozen-heated method", Eng. Mech., 20(4), 156-160. https://doi.org/10.3969/j.issn.1000-4750.2003.04.028
- Hincz, K. (2009), "Nonlinear analysis of cable net structures suspended from arches with block and tackle suspension system, taking into account the friction of the pulley", Int. J. Space Struct., 24(3), 143-152. https://doi.org/10.1260/026635109789867643.
- Impollonia, N., Ricciardi, G. and Saitta, F. (2011), "Statics of elastic cables under 3D point forces", Int. J. Solid. Struct., 48, 1268-1276. https://doi.org/10.1016/j.ijsolstr.2011.01.007.
- Irvine, H.M. (1992), Cable Structures, Dover Publications, New York.
- Jayaraman, H.B. and Knudson, W.C. (1981), "A curved element for the analysis of cable structures", Comput. Struct., 14(3-4), 325-333. https://doi.org/10.1016/0045-7949(81)90016-X.
- Ju, F. and Choo, Y.S. (2005), "Super element approach to cable passing through multiple pulleys", Int. J. Solid. Struct., 42(11), 3533-3547. https://doi.org/10.1016/j.ijsolstr.2004.10.014.
- Kan, Z., Peng, H. and Chen, B. (2019), "A simple linear complementarity approach for sliding cable modeling considering friction", Mech. Syst. Signal Pr., 130, 293-314. https://doi.org/10.1016/j.ymssp.2019.05.012.
- Kan, Z., Peng, H., Chen, B. and Zhong, W. (2018), "A sliding cable element of multibody dynamics with application to nonlinear dynamic deployment analysis of clustered tensegrity", Int. J. Solid. Struct., 130, 61-79. https://doi.org/10.1016/j.ijsolstr.2017.10.012.
- Lee, K.H., Choo, Y.S. and Ju, F. (2003), "Finite element modelling of frictional slip in heavy lift sling systems", Comput. Struct., 81, 2673-2690. https://doi.org/10.1016/S0045-7949(03)00333-X.
- Liang, X. and Mosalam, K.M. (2016), "Lyapunov stability and accuracy of direct integration algorithms applied to nonlinear dynamic problems", J. Eng. Mech., 142(5), 04016022. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001073.
- Liu, H. and Chen, Z. (2012a), "Influence of cable sliding on the stability of suspen-dome with stacked arches structures", Adv. Steel Constr., 8(1), 54-70.
- Liu, H. and Chen, Z. (2012b), "Structural behavior of the suspendome structures and the cable dome structures with sliding cable joints", Struct. Eng. Mech., 43(1), 53-70. https://doi.org/10.12989/sem.2012.43.1.053.
- Matsumoto, Y., Nishioka, T., Shiojiri, H. and Matsuzaki, K. (1978), "Dynamic design of footbridges", IABSE Proceedings.
- McDonald, B.M. and Peyrot, A.H. (1988), "Analysis of cables suspended in sheaves", J. Struct. Eng., 114(3), 693-706. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:3(693).
- Pauletti, R.M.O. and Pimenta, P.M. (1995), "Formulacao de um elemento finito de cabo incorporando o efeito do atrito (elemento de cabo escorregando)", Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria, 11, 565-576.
- Rezaiee-Pajand, M. and Hashemian, M. (2016), "Time integration method based on discrete transfer function", Int. J. Struct. Stab. Dyn., 16, 1550009. https://doi.org/10.1142/S0219455415500091.
- Rezaiee-Pajand, M. and Karimi-Rad, M. (2016), "A new explicit time integration scheme for nonlinear dynamic analysis", Int. J. Struct. Stab. Dyn., 16, 155005. https://doi.org/10.1142/S0219455415500546.
- Rezaiee-Pajand, M. and Mohammadi-khatami, M. (2021), "Nonlinear analysis of cable structures using the dynamic relaxation method", Front. Struct. Civil Eng., 15(1), 253-274. https://doi.org/10.1007/s11709-020-0639-y.
- Rezaiee-Pajand, M., Esfehani, S.A.H. and Ehsanmanesh, H. (2021), "An efficient weighted residual time integration family", Int. J. Struct. Stab. Dyn., 21(08), 2150106. https://doi.org/10.1142/S0219455421501066.
- Rezaiee-Pajand, M., Esfehani, S.A.H. and Karimi-Rad, M. (2016), "Highly accurate family of time integration method", Struct. Eng. Mech., 67(6), 603-616. https://doi.org/10.12989/sem.2016.67.6.603.
- Rezaiee-Pajand, M., Mokhtari, M. and Masoodi, A.R. (2018), "A novel cable element for nonlinear thermo-elastic analysis", Eng. Struct., 167, 431-444. https://doi.org/10.1016/j.engstruct.2018.04.022.
- Salehi Ahmad Abad, M., Shooshtari, A., Esmaeili, V. and Naghavi Riabi, A. (2013), "Nonlinear analysis of cable structures under general loadings", Finite Elem. Anal. Des., 73, 11-19. https://doi.org/10.1016/j.finel.2013.05.002.
- Such, M., Jimenez-Octavio J.R. and Carnicero, A. (2009), "An approach based on the catenary equation to deal with static analysis of three dimensional cable structures", Eng. Struct., 31, 2162-2170. https://doi.org/10.1016/j.engstruct.2009.03.018.
- Thai, H.T. and Kim, S.E. (2011), "Nonlinear static and dynamic analysis of cable structures", Finite Elem. Anal. Des., 47, 237-246. https://doi.org/10.1016/j.finel.2010.10.005.
- Vu, T., Lee, H. and Bui, Q. (2012), "Nonlinear analysis of cable-supported structures with a spatial catenary cable element", Struct. Eng. Mech., 43(5), 583-605. https://doi.org/10.12989/sem.2012.43.5.583.
- Wei, J.D. (2004), "Cable sliding at supports in cable structures", J. Southwest Jiaotong Univ. (English Ed.), 12(1), 56-60.
- Wei, J.D. and Xu, W.G. (2005), "Cable-pulley element to analyze pulley sliding on cable", Chin. J. Theor. Appl. Mech., 37(3), 322-328.
- Yang, M., Chen, Z. and Hua, X. (2010), "A new two-node catenary cable element for the geometrically non-linear analysis of cable-supported structures", J. Mech. Eng. Sci., 224, 1173-1183. https://doi.org/10.1243/09544062JMES1816.
- Yang, Y.B. and Tsay, J.Y. (2007), "Geometric nonlinear analysis of cable structures with a two-node cable element by generalized displacement control method", Int. J. Struct. Stab. Dyn., 7(4), 571-588. https://doi.org/10.1142/S0219455407002435.
- Yu, X.M., Chen, D.W. and Bai, Z.Z. (2018), "A new method for analysis of sliding cable structures in bridge engineering", J. Civil Eng., 22, 4483-4489. https://doi.org/10.1007/s12205-017-0151-7.
- Yu, Y., Chen, Z. and Yan, R. (2019), "Finite element modeling of cable sliding and its effect on dynamic response of cable-supported truss", Front. Struct. Civil Eng., 13, 1227-1242. https://doi.org/10.1007/s11709-019-0551-5.
- Zhou, B., Accorsi, M.L. and Leonard, J.W. (2004), "Finite element formulation for modeling sliding cable elements", Comput. Struct., 82(2-3), 271-280. https://doi.org/10.1016/j.compstruc.2003.08.006.