Acknowledgement
The paper's author, Montaser Fekry is funded by a PhD scholarship from the Ministry of Higher Education of the Arab Republic of Egypt and the Russian Government Scholarship with application No: EGY-6154/17.
References
- Alharbi, A.M., Othman, M.I. and Atef, H.M. (2021), "Effect of viscosity and rotation on a generalized twotemperature thermoelasticity under five theories", Struct. Eng. Mech., 78(6), 755-764. https://doi.org/10.12989/sem.2021.78.6.755.
- Andrushkiw, R.I. (1995), "On the spectral theory of operator pencils in a Hilbert space", J. Nonlin. Math. Phys., 2(3-4), 356-366. https://doi.org/10.2991/jnmp.1995.2.3-4.15.
- Arutyunyan, N.K., Drozdov, A.D. and Naumov, V.E. (1987), "Mechanics of growing viscoelastoplastic bodies", Nauka, Moscow.
- Buchbinder, D., Meiners, W., Pirch, N., Wissenbach, K. and Schrage, J. (2014), "Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting", J. Laser Appl., 26(1), 012004. https://doi.org/10.2351/1.4828755.
- Ciarletta, P., Destrade, M., Gower, A.L. and Taffetani, M. (2016), "Morphology of residually stressed tubular tissues: Beyond the elastic multiplicative decomposition", J. Mech. Phys. Solid., 90, 242-253. https://doi.org/10.1016/j.jmps.2016.02.020.
- DebRoy, T., Wei, H.L., Zuback, J.S., Mukherjee, T., Elmer, J.W., Milewski, J.O., ... & Zhang, W. (2018), "Additive manufacturing of metallic components process, structure and properties", Prog. Mater. Sci., 92, 112-224. https://doi.org/10.1016/j.pmatsci.2017.10.001.
- Donachie, M.J. (2000), Titanium: A Technical Guide, ASM International.
- Green, A.E. (1962), "Thermoelastic stresses in initially stressed bodies", Proc. Roy. Soc. London. Ser. A. Math. Phys. Sci., 266(1324), 1-9. https://doi.org/10.1098/rspa.1962.0043.
- John, F. (1982), Partial Differential Equations, Springer-Verlag, New York.
- Johnson, B.E. and Hoger, A. (1995), "The use of a virtual configuration in formulating constitutive equations for residually stressed elastic materials", J. Elast., 41(3), 177-215. https://doi.org/10.1007/BF00041874.
- Klarbring, A., Olsson, T. and Stalhand, J. (2007), "Theory of residual stresses with application to an arterial geometry", Arch. Mech., 59(4-5), 341-364.
- Kruth, J.P., Deckers, J., Yasa, E. and Wauthl, R. (2012), "Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method", Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf., 226(6), 980-991. https://doi.org/10.1177/0954405412437085.
- Kruth, J.P., Leu, M.C. and Nakagawa, T. (1998), "Progress in additive manufacturing and rapid prototyping", CIRP Ann.- Manuf. Technol., 47(2), 525-540. https://doi.org/10.1016/S0007-8506(07)63240-5.
- Levitin, A.L., Lychev, S.A. and Saifutdinov, I.N. (2014), "Transient dynamical problem for a accreted thermoelastic parallelepiped", Proceedings of the World Congress on Engineering, 2, London, July.
- Levitin, A.L., Lychev, S.A., Manzhirov, A.V. and Shatalov, M.Y. (2012), "Nonstationary vibrations of a discretely accreted thermoelastic parallelepiped", Mech. Solid., 47(6), 677-689. https://doi.org/10.3103/S0025654412060106.
- Levy, G.N., Schindel, R. and Kruth, J.P. (2003), "Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives", CIRP Ann., 52(2), 589-609. https://doi.org/10.1016/S0007-8506(07)60206-6.
- Lorrain, P. and Corson, D.R. (1970), Electromagnetic Fields and Waves.
- Lychev, S.A. (2008), "Coupled dynamic thermoviscoelasticity problem", Mech. Solid., 43(5), 769-784. https://doi.org/10.3103/S0025654408050129.
- Lychev, S.A. (2011), "Universal deformations of growing solids", Mech. Solid., 46(6), 863-876. https://doi.org/10.3103/S0025654411060069.
- Lychev, S.A. (2017), "Geometric aspects of the theory of incompatible deformations in growing solids", Mech. Mater. Technol., 327-347. https://doi.org/10.1007/978-3-319-56050-2_19.
- Lychev, S.A. and Fekry, M. (2021), "Residual stresses in a thermoelastic cylinder resulting from layer-by-layer surfacing", Vestnik Samarskogo Universiteta. Estestvenno-Nauchnaya Seriya, 26(3), 63-90.
- Lychev, S.A. and Koifman, K. (2018), Geometry of Incompatible Deformations: Differential Geometry in Continuum Mechanics, De Gruyter.
- Lychev, S.A. and Manzhirov, A.V. (2013), "Reference configurations of growing bodies", Mech. Solid., 48(5), 553-560. https://doi.org/10.3103/S0025654413050117.
- Lychev, S.A. and Manzhirov, A.V. (2014), "Discrete and continuous growth of hollow cylinder. Finite deformations", Proceedings of the World Congress on Engineering, 2, London, July.
- Lychev, S.A., Kostin, G.V., Koifman, K.G. and Lycheva, T.N. (2018), "Modeling and optimization of layer-by-layer structures", J. Phys.: Conf. Ser., 1009(1), 012014-50. https://doi.org/10.1088/1742-6596/1009/1/012014
- Lychev, S.A., Manzhirov, A., Shatalov, M. and Fedotov, I. (2017), "Transient temperature fields in growing bodies subject to discrete and continuous growth regimes", Procedia IUTAM, 23, 120-129. https://doi.org/10.1016/j.piutam.2017.06.012.
- Lychev, S.A., Manzhirov, A.V. and Joubert, S.V. (2010), "Closed solutions of boundary-value problems of coupled thermoelasticity", Mech. Solid., 45(4), 610-623. https://doi.org/10.3103/S0025654410040102.
- Meiners, W., Wissenbach, K. and Gasser, A. (1998), "Shaped body especially prototype or replacement part production", DE Patent, 19.
- Mercelis, P. and Kruth, J.P. (2006), "Residual stresses in selective laser sintering and selective laser melting", Rapid Prototyp. J., 12(5), 254-265. https://doi.org/10.1108/13552540610707013.
- Othman, M.I.A. and Fekry, M. (2017), "The effect of initial stress on generalized thermoviscoelastic medium with voids and temperature dependent properties under Green Neghdi Theory", Mech. Mech. Eng., 21(2), 291-308.
- Othman, M.I.A., Fekry, M. and Marin, M. (2020), "Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating", Struct. Eng. Mech., 73(6), 621-629. https://doi.org/10.12989/sem.2020.73.6.621.
- Ozakin, A. and Yavari, A. (2010), "A geometric theory of thermal stresses", J. Math. Phys., 51(3), 032902. https://doi.org/10.1063/1.3313537.
- Polyanin, A.D. and Lychev, S.A. (2016), "Decomposition methods for coupled 3D equations of applied mathematics and continuum mechanics: Partial survey, classification, new results, and generalizations", Appl. Math. Model., 40(4), 3298-3324. https://doi.org/10.1016/j.apm.2015.10.016.
- Sadik, S. and Yavari, A. (2017), "Geometric nonlinear thermoelasticity and the time evolution of thermal stresses", Math. Mech. Solid., 22(7), 1546-1587. https://doi.org/10.1177/1081286515599458.
- Vilaro, T., Colin, C. and Bartout, J.D. (2011), "As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting", Metal. Mater. Transac. A, 42(10), 3190-3199. https://doi.org/10.1007/s11661-011-0731-y.
- Wang, J. and Slattery, S.P. (2002), "Thermoelasticity without energy dissipation for initially stressed bodies", Int. J. Math. Math. Sci., 31(6), 329-337. https://doi.org/10.1155/S0161171202105023.
- Weeks, W.L. (1981), Transmission and Distribution of Electrical Energy, Harpercollins.
- Yavari, A. (2010), "A geometric theory of growth mechanics", J. Nonlin. Sci., 20(6), 781-830. https://doi.org/10.1007/s00332-010-9073-y.
- Zaeh, M.F. and Branner, G. (2010), "Investigations on residual stresses and deformations in selective laser melting", Prod. Eng., 4(1), 35-45. https://doi.org/10.1007/s11740-009-0192-y