Acknowledgement
The authors are grateful for the financial support provided by the National Natural Science Foundation of China (Grant No. 51908084).
References
- Bucinskas, P. and Andersen, L.V. (2020), "Dynamic response of vehicle-bridge-soil system using lumped-parameter models for structure-soil interaction", Comput. Struct., 238, 106270. https://doi.org/10.1016/j.compstruc.2020.106270.
- Cai, C.B., He, Q.L., Zhu, S.Y., Zhai, W.M. and Wang, M.Z. (2019), "Dynamic interaction of suspension-type monorail vehicle and bridge: Numerical simulation and experiment", Mech. Syst. Signal Pr., 118, 388-407. https://doi.org/10.1016/j.ymssp.2018.08.062.
- Erdogan, Y.S. and Catbas, N.F. (2020), "Seismic response of a highway bridge in case of vehicle-bridge dynamic interaction", Earthq. Struct., 18(1), 1-14. https://doi.org/10.12989/eas.2020.18.1.014.
- Fryba, L. (1972), Vibration of Solids and Structures under Moving Loads, Noordhoff International Publishing, Groningen.
- Gonzalez, A. and Mohammed, O. (2019), "Damage detection in bridges based on patterns of dynamic amplification", Struct. Control Hlth., 26 (7), e2361. https://doi.org/10.1002/stc.2361.
- Greco, F. and Lonetti, P. (2018), "Numerical formulation based on moving mesh method for vehicle-bridge interaction", Adv. Eng. Softw., 121, 75-83. https://doi.org/10.1016/j.advengsoft.2018.03.013.
- Greco, F., Lonetti, P. and Pascuzzo, A. (2020), "A moving mesh FE methodology for vehicle-bridge interaction modeling", Mech. Adv. Mater. Struct., 27(14), 1256-1268. https://doi.org/10.1080/15376494.2018.1506955.
- ISO 8608: 2016 (2016), Mechanical Vibration-Road Surface Profiles-Reporting of Measured Data, International Organization for Standardization, Geneva.
- Liu, H.Y., Yu, Z.W., Guo, W. and Han, Y. (2021), "A model for investigating vehicle-bridge interaction under high moving speed", Struct. Eng. Mech., 77(5), 627-635. https://doi.org/10.12989/sem.2021.77.5.627.
- Liu, J.P., Cao, L. and Chen, Y.F. (2019a), "Analytical solution for free vibration of multi-span continuous anisotropic plates by the perturbation method", Struct. Eng. Mech., 69(3), 283-291. https://doi.org/10.12989/sem.2019.69.3.283.
- Liu, L.Y., Qin, J.L., Zhou, Y.L., Xi, R. and Peng, S.Y. (2019b), "Structural noise mitigation for viaduct box girder using acoustic modal contribution analysis", Struct. Eng. Mech., 72(4), 421-432. https://doi.org/10.12989/sem.2019.72.4.421.
- Liu, X.W., Xie, J., Wu, C. and Huang, X.C. (2008), "Semi-analytical solution of vehicle-bridge interaction on transient jump of wheel", Eng. Struct., 30(9), 2401-2412. https://doi.org/10.1016/j.engstruct.2008.01.007.
- Montenegro, P.A., Castro, J.M., Calcada, R., Soares, J.M., Coelho, H. and Pacheco, P. (2021), "Probabilistic numerical evaluation of dynamic load allowance factors in steel modular bridges using a vehicle-bridge interaction model", Eng. Struct., 226, 111316. https://doi.org/10.1016/j.engstruct.2020.111316.
- Mousavi, M., Holloway, D., Olivier, J.C. and Gandomi, A.H. (2021), "Beam damage detection using synchronisation of peaks in instantaneous frequency and amplitude of vibration data", Measure., 168, 108297. https://doi.org/10.1016/j.measurement.2020.108297.
- Rieker, J.R., Lin, Y.H. and Trethewey, M.W. (1996), "Discretization considerations in moving load finite element beam models", Finite Elem. Anal. Des., 21(3), 129-144. https://doi.org/10.1016/0168-874X(95)00029-S.
- Shafigh, A., Ahmadi, H.R. and Bayat, M. (2021), "Seismic investigation of cyclic pushover method for regular reinforced concrete bridge", Struct. Eng. Mech., 78(1), 41-52. https://doi.org/10.12989/sem.2021.78.1.041.
- Shi, Z.H. and Uddin, N. (2021), "Extracting multiple bridge frequencies from test vehicle-A theoretical study", J. Sound Vib., 490, 115735. https://doi.org/10.1016/j.jsv.2020.115735.
- Wu, C.P. and Lin, C.C. (2020) "Static analysis of multiple graphene sheet systems in cylindrical bending and resting on an elastic medium", Struct. Eng. Mech., 75(1), 109-122. https://doi.org/10.12989/sem.2020.75.1.109.
- Yang, J. and Cao, C.Y. (2020), "Wheel size embedded two-mass vehicle model for scanning bridge frequencies", Acta Mechanica, 231(4), 1461-1475. https://doi.org/10.1007/s00707-019-02595-5.
- Yang, J.P. (2021), "Theoretical formulation of three-mass vehicle model for vehicle-bridge interaction", Int. J. Struct. Stab. Dyn., 21(07), 2171004. https://doi.org/10.1142/S0219455421710048.
- Yang, J.P. and Chen, B.H. (2018), "Two-mass vehicle model for extracting bridge frequencies", Int. J. Struct. Stab. Dyn., 18(4), 1850056. https://doi.org/10.1142/S0219455418500566.
- Yang, J.P. and Sun, J.Y. (2020), "Pitching effect of a three-mass vehicle model for analyzing vehicle-bridge interaction", Eng. Struct., 224, 11248. https://doi.org/10.1016/j.engstruct.2020.111248.
- Yang, Y.B. and Lin, B.H. (1995), "Vehicle-bridge interaction analysis by dynamic condensation method", J. Struct. Eng., 121(11), 1636-1643. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:11(1636).
- Yang, Y.B. and Yang, J.P. (2018), "State-of-the-art review on modal identification and damage detection of bridges by moving test vehicles", Int. J. Struct. Stab. Dy., 18(2), 1850025. https://doi.org/10.1142/S0219455418500256.
- Yang, Y.B. and Yau, J.D. (1997), "Vehicle-bridge interaction element for dynamic analysis", J. Struct. Eng., ASCE, 123(11), 1512-1518. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:11(1512).
- Yang, Y.B. Li, Y.C. and Chang, K.C. (2012), "Effect of road surface roughness on the response of a moving vehicle for identification of bridge frequencies", Interact. Multisc. Mech., 5(4), 347-368. https://doi.org/10.12989/imm.2012.5.4.347.
- Yang, Y.B., Chang, C.H. and Yau, J.D. (1999), "An element for analysing vehicle-bridge systems considering vehicle's pitching effect", Int. J. Numer. Meth. Eng., 46(7), 1031-1047. https://doi.org/10.1002/(SICI)1097-0207(19991110)46:7<1031::AID-NME738>3.0.CO;2-V.
- Yang, Y.B., Lin, C.W. and Yau, J.D. (2004), "Extracting bridge frequencies from the dynamic response of a passing vehicle", J. Sound Vib., 272(3-5), 471-493. https://doi.org/10.1016/S0022-460X(03)00378-X.
- Yang, Y.B., Wang, Z.L., Shi, K., Xu, H. and Wu, Y.T. (2020), "State-of-the-art of vehicle-based methods for detecting various properties of highway bridges and railway tracks", Int. J. Struct. Stab. Dyn., 20(13), 2041004. https://doi.org/10.1142/S0219455420410047.
- Yang, Y.B., Zhang, B., Wang, T.Y., Xu, H. and Wu, Y.T. (2019), "Two-axle test vehicle for bridges: Theory and applications", Int. J. Mech. Sci., 152, 51-62. https://doi.org/10.1016/j.ijmecsci.2018.12.043.
- Yigit, C.O., El-Mowafy, A., Bezcioglu, M. and Dindar, A.A. (2020), "Investigating the effects of ultra-rapid, rapid vs. final precise orbit and clock products on high-rate GNSS-PPP for capturing dynamic displacements", Struct. Eng. Mech., 73(4), 427-436. https://doi.org/10.12989/sem.2020.73.4.427.
- Zhan, Y. and Au, F.T.K. (2019), "Bridge surface roughness identification based on vehicle-bridge interaction", Int. J. Struct. Stab. Dyn., 19(7), 1950069. https://doi.org/10.1142/S021945541950069X.