DOI QR코드

DOI QR Code

Actual fatigue reliability of structural material: Vibration efficiency

  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Khadimallah, Mohamed A. (Civil Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University) ;
  • Ayed, Hamdi (Department of Civil Engineering, College of Engineering, King Khalid University) ;
  • Alshoaibi, Adil (Department of Physics, College of Science, King Faisal University) ;
  • Loukil, Hassen (Department of Electrical Engineering, College of Engineering, King Khalid University) ;
  • Alsoruji, Ghazi (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2021.11.25
  • Accepted : 2022.04.16
  • Published : 2022.04.25

Abstract

This paper is concerned with the vibration analysis of middle layer cylindrical shell made of functionally graded material. The outer layers and inner layer are composed of functionally graded and isotropic material respectively. The Rayleigh Ritz method is applied to solve the presented shell dynamics equations. Two configurations are constructed with layers distributions. Fundamental natural frequencies of the three layered cylindrical shell is plotted against the circumferential wave number with different power law exponents. The frequency decreases with the increase of power law exponent. The fundamental natural frequencies first decreases and fall down to its minimum value, after frequencies increases with circumferential wave number. This is due to change in the magnitude of extensional and bending energies of the cylindrical shells. The computer software MATLAB has been employed for the computation of presented frequencies and tested the results obtained in order to assess the accuracy and validity of the cylindrical shell model for predicting the vibration frequencies of cylindrical shell.

Keywords

Acknowledgement

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups under grant number R.G.P.2/155/43.

References

  1. Ahmad, M. and Naeem, M.N. (2009), "Vibration characteristics of rotating FGM circular cylindrical shell using wave propagation method", Eur. J. Sci. Res., 36(2), 184-235.
  2. Akbas S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stab. Dyn., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X.
  3. Akbas, S.D. (2016a), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125.
  4. Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579.
  5. Akbas, S.D. (2017b), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009.
  6. Akbas, S.D. (2018), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(8), 1-11. https://doi.org/10.1007/s40430-018-1315-1.
  7. Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039.
  8. Akbas, S.D. (2018b), "Bending of a cracked functionally graded nanobeam", Advances Nano Res., 6(3), 219-242. https://doi.org/10.12989/anr.2018.6.3.219.
  9. Akbas, S.D. (2019), "Axially forced vibration analysis of cracked a nanorod", J. Comput. Appl. Mech., 50(1), 63-68. http://doi.org/10.22059/jcamech.2019.281285.392.
  10. Akbas, S.D. (2020), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277-282. https://doi.org/10.12989/anr.2020.8.4.277.
  11. Alzabeebee, S. (2020), "Dynamic response and design of a skirted strip foundation subjected to vertical vibration", Geomech. Eng., 20(4), 345-358. https://doi.org/10.12989/gae.2020.20.4.345.
  12. Amabili, M., Pellicano, F. and Paidoussis M.P. (1998), "Nonlinear vibrations of simply Love, A.E.H. (1888), "On the small free vibrations and deformation of thin elastic shell", Phil. Trans. R. Soc. London, A179, 491-549. https://doi.org/10.1098/rsta.1888.0016.
  13. Arefi, M. and Zur, K.K. (2020), "Free vibration analysis of functionally graded cylindrical nanoshells resting on Pasternak foundation based on two-dimensional analysis", Steel Compos. Struct., 34(4), 615-623. https://doi.org/10.12989/scs.2020.34.4.61.
  14. Bouanati, S., Benrahou, K.H., Atmane, H.A., Yahia, S.A., Bernard, F., Tounsi, A., and Bedia, E.A. (2019), "Investigation of wave propagation in anisotropic plates via quasi 3D HSDT", Geomech. Eng., 18(1), 85-96. https://doi.org/10.12989/gae.2019.18.1.085.
  15. Bouazza, M., Antar, K., Amara, K., Benyoucef, S., and Bedia, E. A.A. (2019), "Influence of temperature on the beams behavior strengthened by bonded composite plates", Geomech. Eng., 18(5), 555-566. https://doi.org/10.12989/gae.2019.18.5.555.
  16. Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A., and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
  17. Bryan, G.H. (1890), "On the beats in the vibration of revolving cylinder", Proceedings of the Cambridge philosophical Society, 7, 101-111.
  18. Chen, Y., Zhao, H.B. and Shea, Z.P. (1993), "Vibrations of high speed rotating shells with calculations for cylindrical shells", J. Sound Vib., 160, 137-160. https://doi.org/10.1006/jsvi.1993.1010.
  19. Chen, Y., Zhao, H.B. and Shin, Z.P. (1993), "Vibration of high speed rotating shells with calculation for cylindrical shells", J. Sound Vib., 160, 137. https://doi.org/10.1006/jsvi.1993.1010.
  20. Chung, H., Turula, P. Mulcahy, T.M., and Jendrzejczyk, J.A. (1981), "Analysis of cylindrical shell vibrating in a cylindrical fluid region", Nucl. Eng. Des., 63(1), 109-1012. https://doi.org/10.1016/0029-5493(81)90020-0.
  21. Civalek, O . (2020), "Vibration of functionally graded carbon nanotube reinforced quadrilateral plates using geometric transformation discrete singular convolution method", Int. J. Numer. Method. Eng., 121(5), 990-1019. https://doi.org/10.1002/nme.6254
  22. Civalek, O. and Jalaei, M.H. (2020), "Buckling of carbon nanotube (CNT)-reinforced composite skew plates by the discrete singular convolution method", Acta Mechanica, 231(6), 2565-2587. https://doi.org/10.1007/s00707-020-02653-3
  23. Di Taranto, R. A. and Lessen, M. (1964), "Coriolis acceleration effect on the vibration of rotating thin-walled circular cylinder", Trans. ASME J. Appl. Mech., 31, 700-701. https://doi.org/10.1115/1.3629733.
  24. Ergin, A. and Temarel, P. (2002), "Free vibration of a partially liquid-filled and submerged, horizontal cylindrical shell", J. Sound Vib., 254(5), 951-965. https://doi.org/10.1006/jsvi.2001.4139.
  25. Fattahi, A.M., Safaei, B. and Ahmed, N.A. (2019), "A comparison for the non-classical plate model based on axial buckling of single-layered graphene sheets", Eur. Phys. J. Plus, 134(11), 555. https://doi.org/10.1140/epjp/i2019-12912-7.
  26. Fattahi, A.M., Safaei, B., Qin, Z. and Chu, F. (2021), "Experimental studies on elastic properties of high density polyethylene-multi walled carbon nanotube nanocomposites", Steel Compos. Struct., 38(2), 177-187. https://doi.org/10.12989/scs.2021.38.2.177.
  27. Fox, C.H.J. and Hardie, D.J.W. (1985), "Harmonic response of rotating cylindrical shell", J. Sound Vib., 101, 495-510. https://doi.org/10.1016/S0022-460X(85)80067-5.
  28. Ghosh, A., Miyamoto, Y., Reimanis, I. and Lannutti, J.J. (1997), "Functionally graded materials, manufacture, properties and applications", Am. Ceram. Soc., 76, 171-189.
  29. Koizumi, M.F.G.M. (1997), "FGM activities in Japan", Compos. Part B Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
  30. Lam K.Y. and Loy, C.T. (1994), "On vibration of thin rotating laminated composite cylindrical shells", J. Sound Vib., 116, 198. https://doi.org/10.1016/0961-9526(95)91289-S.
  31. Lam, K.Y. and Loy, C.T. (1998), "Influence of boundary conditions for a thin laminated rotating cylindrical shell", Compos. Struct., 41, 215-228. https://doi.org/10.1016/S0263-8223(98)00012-9.
  32. Lata, P. and Kaur, H. (2019), "Deformation in transversely isotropic thermoelastic medium using new modified couple stress theory in frequency domain", Geomech. Eng., 19(5), 369-381. https://doi.org/10.12989/gae.2019.19.5.369.
  33. Li, H. and Lam, K.Y. (1998), "Frequency characteristics of a thin rotating cylindrical shell using the generalized differential quadrature method", Int. J. Mech. Sci., 40(5), 443-459. https://doi.org/10.1016/S0020-7403(97)00057-X.
  34. Loy, C.T. and Lam, K.Y. (1997), "Vibration of cylindrical shells with ring supports", J. Mech. Eng., 39, 455-471. https://doi.org/10.1016/S0020-7403(96)00035-5.
  35. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020a), "Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection", Steel Compos. Struct., 35(4), 567-578. https://doi.org/10.12989/scs.2020.35.4.567.
  36. Mirjavadi, S.S., Forsat, M., Nia, A.F., Badnava, S. and Hamouda, A.M.S. (2020b), "Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells", Adv. Nano Res., 8(2), 149-156. https://doi.org/10.12989/anr.2020.8.2.149.
  37. Najafizadeh, M.M. and Isvandzibaei, M.R. (2007), "Vibration of (FGM) cylindrical shells based on higher order shear deformation plate theory with ring support", Acta Mechanica, 191, 75-91. http/10.1007/s00707-006-0438-0.
  38. Padovan, J. (1975), "Travelling waves vibrations and buckling of rotating anisotropic shells of revolution by finite element", Int. J. Solid Struct., 11(12), 1367-1380. https://doi.org/10.1016/0020-7683(75)90064-5.
  39. Pan, S., Dai, Q., Safaei, B., Qin, Z. and Chu, F. (2021), "Damping characteristics of carbon nanotube reinforced epoxy nanocomposite beams", Thin Wall. Struct., 166, 108127. https://doi.org/10.1016/j.tws.2021.108127.
  40. Penzes, R.L.E. and Kraus H. (1972), "Free vibrations of pre-stresses cylindrical shells having arbitrary homogeneous boundary conditions", AIAA J., 10, 1309. https://doi.org/10.2514/3.6605.
  41. Safaei, B. (2020), "The effect of embedding a porous core on the free vibration behavior of laminated composite plates", Steel Compos. Struct., 35(5), 659-670. https://doi.org/10.12989/scs.2020.35.5.659.
  42. Safaei, B. (2021), "Frequency-dependent damped vibrations of multifunctional foam plates sandwiched and integrated by composite faces", Eur. Phys. J. Plus, 136(6), 1-16. https://doi.org/10.1140/epjp/s13360-021-01632-4.
  43. Safaei, B. and Fattahi, A.M. (2017), "Free vibrational response of single-layered graphene sheets embedded in an elastic matrix using different nonlocal plate models", Mech., 23(5), 678-687. https://doi.org/10.5755/j01.mech.23.5.14883.
  44. Safaei, B., Fattahi, A.M. and Chu, F. (2018), "Finite element study on elastic transition in platelet reinforced composites", Microsyst. Tech., 24(6), 2663-2671. https://doi.org/10.1007/s00542-017-3651-y.
  45. Safaei, B., Moradi-Dastjerdi, R., Qin, Z., Behdinan, K. and Chu, F. (2021a), "Determination of thermoelastic stress wave propagation in nanocomposite sandwich plates reinforced by clusters of carbon nanotubes", J. Sandw. Struct. Mater., 23(3), 884-905. https://doi.org/10.1177/1099636219848282.
  46. Safaei, B., Moradi-Dastjerdi, R., Qin, Z., Behdinan, K. and Chu, F. (2021b), "Determination of thermoelastic stress wave propagation in nanocomposite sandwich plates reinforced by clusters of carbon nanotubes", J. Sandw. Struct. Mater., 23(3), 884-905. https://doi.org/10.1177/1099636219848282.
  47. Safaei, B., Naseradinmousavi, P. and Rahmani, A. (2016), "Development of an accurate molecular mechanics model for buckling behavior of multi-walled carbon nanotubes under axial compression", J. Mole. Graphic. Model., 65, 43-60. https://doi.org/10.1016/j.jmgm.2016.02.001.
  48. Saito, T. and Endo, M. (1986), V"ibrations of finite length rotating cylindrical shell", J. Sound Vib., 107, 17. https://doi.org/10.1016/0022-460X(86)90279-8.
  49. Sewall, J.L. and Naumann, E.C. (1968), An Experimental and Analytical Vibration Study of Thin Cylindrical Shells with and without Longitudinal Stiffeners, National Aeronautic and Space Administration.
  50. Sharma, P., Singh, R. and Hussain, H, (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science, 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234.
  51. Sivadas, K.R. and Ganesan, N. (1964), "Effect of rotation on vibrations of moderately thin cylindrical shell", J. Vib. Acoust., 116(1), 198-202. https://doi.org/10.1115/1.2930412.
  52. Srinivasan, A.V. and Luaterbach, G.F. (1971), "Travelling waves in rotating cylindrical shells", Trans. ASME J. Eng. Indust., 93, 1229-1232. https://doi.org/10.1115/1.3428067.
  53. Suresh, S. and Mortensen, A. (1997), "Functionally gradient metals and metal ceramic composites", Part 2 Therm. Mech. Behav. Int. Mater., 42, 85-116. https://doi.org/10.1179/imr.1997.42.3.85.
  54. Swaddiwudhipong. S., Tian. J. and Wang C.M. (1995), "Vibration of cylindrical shells with ring supports", J. Sound Vib., 187(1), 69-93. https://doi.org/10.1006/jsvi.1995.0503.
  55. Uyar, G.G. and Aksoy, C.O. (2019), "Comparative review and interpretation of the conventional and new methods in blast vibration analyses", Geomech. Eng., 18(5), 545-554. https://doi.org/10.12989/gae.2019.18.5.545
  56. Wang S. S. and Chen, Y. (1974), "Effects of rotation on vibrations of circular cylindrical shells", J. Acoust. Soc. Am., 55, 1340-1342. https://doi.org/10.1121/1.1914708.
  57. Yan, K., Zhang, Y., Cai, H. and Tahouneh, V. (2020), "Vibrational characteristic of FG porous conical shells using Donnell's shell theory", Steel Compos. Struct., 35(2), 249-260.https://doi.org/10.12989/scs.2020.35.2.249.
  58. Zohar, A. and Aboudi, J. (1973), "The free vibrations of thin circular finite rotating cylinder", Int. J. Mech. Sci., 15, 269-278. https://doi.org/10.1016/0020-7403(73)90009-X.