Acknowledgement
The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups under grant number R.G.P.2/155/43.
References
- Ahmad, M. and Naeem, M.N. (2009), "Vibration characteristics of rotating FGM circular cylindrical shell using wave propagation method", Eur. J. Sci. Res., 36(2), 184-235.
- Akbas S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stab. Dyn., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X.
- Akbas, S.D. (2016a), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125.
- Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579.
- Akbas, S.D. (2017b), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009.
- Akbas, S.D. (2018), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(8), 1-11. https://doi.org/10.1007/s40430-018-1315-1.
- Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039.
- Akbas, S.D. (2018b), "Bending of a cracked functionally graded nanobeam", Advances Nano Res., 6(3), 219-242. https://doi.org/10.12989/anr.2018.6.3.219.
- Akbas, S.D. (2019), "Axially forced vibration analysis of cracked a nanorod", J. Comput. Appl. Mech., 50(1), 63-68. http://doi.org/10.22059/jcamech.2019.281285.392.
- Akbas, S.D. (2020), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277-282. https://doi.org/10.12989/anr.2020.8.4.277.
- Alzabeebee, S. (2020), "Dynamic response and design of a skirted strip foundation subjected to vertical vibration", Geomech. Eng., 20(4), 345-358. https://doi.org/10.12989/gae.2020.20.4.345.
- Amabili, M., Pellicano, F. and Paidoussis M.P. (1998), "Nonlinear vibrations of simply Love, A.E.H. (1888), "On the small free vibrations and deformation of thin elastic shell", Phil. Trans. R. Soc. London, A179, 491-549. https://doi.org/10.1098/rsta.1888.0016.
- Arefi, M. and Zur, K.K. (2020), "Free vibration analysis of functionally graded cylindrical nanoshells resting on Pasternak foundation based on two-dimensional analysis", Steel Compos. Struct., 34(4), 615-623. https://doi.org/10.12989/scs.2020.34.4.61.
- Bouanati, S., Benrahou, K.H., Atmane, H.A., Yahia, S.A., Bernard, F., Tounsi, A., and Bedia, E.A. (2019), "Investigation of wave propagation in anisotropic plates via quasi 3D HSDT", Geomech. Eng., 18(1), 85-96. https://doi.org/10.12989/gae.2019.18.1.085.
- Bouazza, M., Antar, K., Amara, K., Benyoucef, S., and Bedia, E. A.A. (2019), "Influence of temperature on the beams behavior strengthened by bonded composite plates", Geomech. Eng., 18(5), 555-566. https://doi.org/10.12989/gae.2019.18.5.555.
- Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A., and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
- Bryan, G.H. (1890), "On the beats in the vibration of revolving cylinder", Proceedings of the Cambridge philosophical Society, 7, 101-111.
- Chen, Y., Zhao, H.B. and Shea, Z.P. (1993), "Vibrations of high speed rotating shells with calculations for cylindrical shells", J. Sound Vib., 160, 137-160. https://doi.org/10.1006/jsvi.1993.1010.
- Chen, Y., Zhao, H.B. and Shin, Z.P. (1993), "Vibration of high speed rotating shells with calculation for cylindrical shells", J. Sound Vib., 160, 137. https://doi.org/10.1006/jsvi.1993.1010.
- Chung, H., Turula, P. Mulcahy, T.M., and Jendrzejczyk, J.A. (1981), "Analysis of cylindrical shell vibrating in a cylindrical fluid region", Nucl. Eng. Des., 63(1), 109-1012. https://doi.org/10.1016/0029-5493(81)90020-0.
- Civalek, O . (2020), "Vibration of functionally graded carbon nanotube reinforced quadrilateral plates using geometric transformation discrete singular convolution method", Int. J. Numer. Method. Eng., 121(5), 990-1019. https://doi.org/10.1002/nme.6254
- Civalek, O. and Jalaei, M.H. (2020), "Buckling of carbon nanotube (CNT)-reinforced composite skew plates by the discrete singular convolution method", Acta Mechanica, 231(6), 2565-2587. https://doi.org/10.1007/s00707-020-02653-3
- Di Taranto, R. A. and Lessen, M. (1964), "Coriolis acceleration effect on the vibration of rotating thin-walled circular cylinder", Trans. ASME J. Appl. Mech., 31, 700-701. https://doi.org/10.1115/1.3629733.
- Ergin, A. and Temarel, P. (2002), "Free vibration of a partially liquid-filled and submerged, horizontal cylindrical shell", J. Sound Vib., 254(5), 951-965. https://doi.org/10.1006/jsvi.2001.4139.
- Fattahi, A.M., Safaei, B. and Ahmed, N.A. (2019), "A comparison for the non-classical plate model based on axial buckling of single-layered graphene sheets", Eur. Phys. J. Plus, 134(11), 555. https://doi.org/10.1140/epjp/i2019-12912-7.
- Fattahi, A.M., Safaei, B., Qin, Z. and Chu, F. (2021), "Experimental studies on elastic properties of high density polyethylene-multi walled carbon nanotube nanocomposites", Steel Compos. Struct., 38(2), 177-187. https://doi.org/10.12989/scs.2021.38.2.177.
- Fox, C.H.J. and Hardie, D.J.W. (1985), "Harmonic response of rotating cylindrical shell", J. Sound Vib., 101, 495-510. https://doi.org/10.1016/S0022-460X(85)80067-5.
- Ghosh, A., Miyamoto, Y., Reimanis, I. and Lannutti, J.J. (1997), "Functionally graded materials, manufacture, properties and applications", Am. Ceram. Soc., 76, 171-189.
- Koizumi, M.F.G.M. (1997), "FGM activities in Japan", Compos. Part B Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
- Lam K.Y. and Loy, C.T. (1994), "On vibration of thin rotating laminated composite cylindrical shells", J. Sound Vib., 116, 198. https://doi.org/10.1016/0961-9526(95)91289-S.
- Lam, K.Y. and Loy, C.T. (1998), "Influence of boundary conditions for a thin laminated rotating cylindrical shell", Compos. Struct., 41, 215-228. https://doi.org/10.1016/S0263-8223(98)00012-9.
- Lata, P. and Kaur, H. (2019), "Deformation in transversely isotropic thermoelastic medium using new modified couple stress theory in frequency domain", Geomech. Eng., 19(5), 369-381. https://doi.org/10.12989/gae.2019.19.5.369.
- Li, H. and Lam, K.Y. (1998), "Frequency characteristics of a thin rotating cylindrical shell using the generalized differential quadrature method", Int. J. Mech. Sci., 40(5), 443-459. https://doi.org/10.1016/S0020-7403(97)00057-X.
- Loy, C.T. and Lam, K.Y. (1997), "Vibration of cylindrical shells with ring supports", J. Mech. Eng., 39, 455-471. https://doi.org/10.1016/S0020-7403(96)00035-5.
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020a), "Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection", Steel Compos. Struct., 35(4), 567-578. https://doi.org/10.12989/scs.2020.35.4.567.
- Mirjavadi, S.S., Forsat, M., Nia, A.F., Badnava, S. and Hamouda, A.M.S. (2020b), "Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells", Adv. Nano Res., 8(2), 149-156. https://doi.org/10.12989/anr.2020.8.2.149.
- Najafizadeh, M.M. and Isvandzibaei, M.R. (2007), "Vibration of (FGM) cylindrical shells based on higher order shear deformation plate theory with ring support", Acta Mechanica, 191, 75-91. http/10.1007/s00707-006-0438-0.
- Padovan, J. (1975), "Travelling waves vibrations and buckling of rotating anisotropic shells of revolution by finite element", Int. J. Solid Struct., 11(12), 1367-1380. https://doi.org/10.1016/0020-7683(75)90064-5.
- Pan, S., Dai, Q., Safaei, B., Qin, Z. and Chu, F. (2021), "Damping characteristics of carbon nanotube reinforced epoxy nanocomposite beams", Thin Wall. Struct., 166, 108127. https://doi.org/10.1016/j.tws.2021.108127.
- Penzes, R.L.E. and Kraus H. (1972), "Free vibrations of pre-stresses cylindrical shells having arbitrary homogeneous boundary conditions", AIAA J., 10, 1309. https://doi.org/10.2514/3.6605.
- Safaei, B. (2020), "The effect of embedding a porous core on the free vibration behavior of laminated composite plates", Steel Compos. Struct., 35(5), 659-670. https://doi.org/10.12989/scs.2020.35.5.659.
- Safaei, B. (2021), "Frequency-dependent damped vibrations of multifunctional foam plates sandwiched and integrated by composite faces", Eur. Phys. J. Plus, 136(6), 1-16. https://doi.org/10.1140/epjp/s13360-021-01632-4.
- Safaei, B. and Fattahi, A.M. (2017), "Free vibrational response of single-layered graphene sheets embedded in an elastic matrix using different nonlocal plate models", Mech., 23(5), 678-687. https://doi.org/10.5755/j01.mech.23.5.14883.
- Safaei, B., Fattahi, A.M. and Chu, F. (2018), "Finite element study on elastic transition in platelet reinforced composites", Microsyst. Tech., 24(6), 2663-2671. https://doi.org/10.1007/s00542-017-3651-y.
- Safaei, B., Moradi-Dastjerdi, R., Qin, Z., Behdinan, K. and Chu, F. (2021a), "Determination of thermoelastic stress wave propagation in nanocomposite sandwich plates reinforced by clusters of carbon nanotubes", J. Sandw. Struct. Mater., 23(3), 884-905. https://doi.org/10.1177/1099636219848282.
- Safaei, B., Moradi-Dastjerdi, R., Qin, Z., Behdinan, K. and Chu, F. (2021b), "Determination of thermoelastic stress wave propagation in nanocomposite sandwich plates reinforced by clusters of carbon nanotubes", J. Sandw. Struct. Mater., 23(3), 884-905. https://doi.org/10.1177/1099636219848282.
- Safaei, B., Naseradinmousavi, P. and Rahmani, A. (2016), "Development of an accurate molecular mechanics model for buckling behavior of multi-walled carbon nanotubes under axial compression", J. Mole. Graphic. Model., 65, 43-60. https://doi.org/10.1016/j.jmgm.2016.02.001.
- Saito, T. and Endo, M. (1986), V"ibrations of finite length rotating cylindrical shell", J. Sound Vib., 107, 17. https://doi.org/10.1016/0022-460X(86)90279-8.
- Sewall, J.L. and Naumann, E.C. (1968), An Experimental and Analytical Vibration Study of Thin Cylindrical Shells with and without Longitudinal Stiffeners, National Aeronautic and Space Administration.
- Sharma, P., Singh, R. and Hussain, H, (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science, 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234.
- Sivadas, K.R. and Ganesan, N. (1964), "Effect of rotation on vibrations of moderately thin cylindrical shell", J. Vib. Acoust., 116(1), 198-202. https://doi.org/10.1115/1.2930412.
- Srinivasan, A.V. and Luaterbach, G.F. (1971), "Travelling waves in rotating cylindrical shells", Trans. ASME J. Eng. Indust., 93, 1229-1232. https://doi.org/10.1115/1.3428067.
- Suresh, S. and Mortensen, A. (1997), "Functionally gradient metals and metal ceramic composites", Part 2 Therm. Mech. Behav. Int. Mater., 42, 85-116. https://doi.org/10.1179/imr.1997.42.3.85.
- Swaddiwudhipong. S., Tian. J. and Wang C.M. (1995), "Vibration of cylindrical shells with ring supports", J. Sound Vib., 187(1), 69-93. https://doi.org/10.1006/jsvi.1995.0503.
- Uyar, G.G. and Aksoy, C.O. (2019), "Comparative review and interpretation of the conventional and new methods in blast vibration analyses", Geomech. Eng., 18(5), 545-554. https://doi.org/10.12989/gae.2019.18.5.545
- Wang S. S. and Chen, Y. (1974), "Effects of rotation on vibrations of circular cylindrical shells", J. Acoust. Soc. Am., 55, 1340-1342. https://doi.org/10.1121/1.1914708.
- Yan, K., Zhang, Y., Cai, H. and Tahouneh, V. (2020), "Vibrational characteristic of FG porous conical shells using Donnell's shell theory", Steel Compos. Struct., 35(2), 249-260.https://doi.org/10.12989/scs.2020.35.2.249.
- Zohar, A. and Aboudi, J. (1973), "The free vibrations of thin circular finite rotating cylinder", Int. J. Mech. Sci., 15, 269-278. https://doi.org/10.1016/0020-7403(73)90009-X.