DOI QR코드

DOI QR Code

Printing performance of 3D printing cement-based materials containing steel slag

  • Zhu, Lingli (School of Materials Science and Engineering, Henan Polytechnic University) ;
  • Yang, Zhang (School of Materials Science and Engineering, Henan Polytechnic University) ;
  • Zhao, Yu (School of Civil Engineering, Henan Polytechnic University) ;
  • Wu, Xikai (School of Civil Engineering, Henan Polytechnic University) ;
  • Guan, Xuemao (School of Materials Science and Engineering, Henan Polytechnic University)
  • 투고 : 2021.07.03
  • 심사 : 2022.03.31
  • 발행 : 2022.04.25

초록

3D printing cement-based materials (3DPCBM) is an innovative rapid prototyping technology for construction materials. This study is tested on the rheological behavior, printability and buildability of steel slag (SS) content based on the extrusion system of 3D printing. 0, 8 wt%, 16 wt%, 24 wt%, 32 wt% and 40 wt% SS was replaced cement, The test results revealed that the addition of SS would increase the fluidity of the printed paste, prolong the open time and setting time, reduce the plastic viscosity, dynamic yield stress and thixotropy, and is beneficial to improve the pumping and extrudability of 3DPCBM. With the increase of SS content, the static yield stress developed slowly with time which indicated that SS is harmful to the buildability of printing paste. The content of SS in 3DPCBM can reach up to 40% at most under the condition of satisfying rheological property and buildability, it provides a reference for the subsequent introduction of SS and other industrial solid waste into 3DPCBM by explored the influence law of SS on the rheological properties of 3DPCBM.

키워드

과제정보

The research work described in this paper was supported by a project from the National Natural Science Foundation of China (U1504513, U1905216).

참고문헌

  1. Akbar, E., Yaakob, Z., Kamarudin, S.K., Ismail, M. and Salimon, J. (2009), "Characteristic and composition of Jatropha curcas oil seed from Malaysia and its potential as biodiesel feedstock feedstock", Eur. J. Sci. Res., 29(3), 396-403.
  2. Bauchkar, S.D. and Chore, H.S. (2017), "Experimental studies on rheological properties of smart dynamic concrete", Adv. Concrete Constr., 5(3), 183-199. http://doi.org/10.12989/acc.2017.5.3.183.
  3. Bauchkar, S.D. and Chore, H.S. (2018), "Effect of PCE superplasticizers on rheological and strength properties of high strength self-consolidating concrete", Adv. Concrete Constr., 6(6), 561-583. http://doi.org/10.12989/acc.2018.6.6.561.
  4. Benyamina, S., Menadi, B., Bernard, S.K. and Kenai, S. (2019), "Performance of self-compacting concrete with manufactured crushed sand", Adv. Concrete Constr., 7(2), 87-96. http://doi.org/10.12989/acc.2019.7.2.087.
  5. Chen, M., Liu, B., Li, L., Cao, L., Huang, Y., Wang, S. and Cheng, X. (2020), "Rheological parameters, thixotropy and creep of 3D-printed calcium sulfoaluminate cement composites modified by bentonite", Compos. Part B Eng., 186, 107821. http://doi.org/10.1016/j.compositesb.2020.107821.
  6. Van Der Putten, J., Deprez, M., Cnudde, V., De Schutter, G. and Van Tittelboom, K. (2019), "Microstructural characterization of 3D printed cementitious materials", Mater., 12(18), 2993. http://doi.org/10.3390/ma12182993.
  7. Feys, D., Cepuritis, R., Jacobsen, S., Lesage, K., Secrieru, E. and Yahia, A. (2018), "Measuring rheological properties of cement pastes: Most common techniques, procedures and challenges", RILEM Tech. Lett., 2, 129-135. http://doi.org/10.21809/rilemtechlett.2017.43.
  8. GB/T 2419-2005. (2005), Test Method of Fluidity of Cement Mortar, GB/T 2419-2005, Standardization Administration of China, Beijing, China.
  9. Gosselin, C., Duballet, R., Roux, P., Gaudilliere, N., Dirrenberger, J. and Morel, P. (2016), "Large-scale 3D printing of ultra-high performance concrete-A new processing route for architects and builders", Mater. Des., 100, 102-109. http://doi.org/10.1016/j.matdes.2016.03.097.
  10. Guo, X., Yang, J. and Xiong, G. (2020), "Influence of supplementary cementitious materials on rheological properties of 3D printed fly ash based geopolymer", Cement Concrete Compos., 114, 103820. http://doi.org/10.1016/j.cemconcomp.2020.103820.
  11. Guo, Y., Xie, J., Zhao, J. and Zuo, K. (2019), "Utilization of unprocessed steel slag as fine aggregate in normal-and high-strength concrete", Constr. Build. Mater., 204, 41-49. http://doi.org/10.1016/j.conbuildmat.2019.01.178.
  12. Ma, G.W. and Wang, L. (2020), "3D printing key technologies for cementitious materials", First Ed, China Building Materials Press, Beijing, China.
  13. Motz, H. and Geiseler, J. (2001), "Products of steel slags an opportunity to save natural resources", Waste Manag., 21(3), 285-293. http://doi.org/10.1016/S0956-053X(00)00102-1.
  14. Han, F.H. and Zhang, Z.Q. (2018), "Properties of 5-year-old concrete containing steel slag powder", Powd. Tech., 334, 27-35. http://doi.org/10.1016/j.powtec.2018.04.054.
  15. Huang, Y., Xu, G.P., Cheng, H., Jiang, Z.H. and Yang, Y. (2014), "Analysis on chemical composition, micro-morphology and phase of typical steel slag", Bull. Chin. Ceram. Soc, 33, 1902-1907. http://doi.org/CNKI:SUN:GSYT.0.2014-08-008. (in Chinese)
  16. Jiang, H., Fall, M. and Cui, L. (2017), "Freezing behaviour of cemented paste backfill material in column experiments", Constr. Build. Mater., 147, 837-846. http://doi.org/10.1016/j.conbuildmat.2017.05.002.
  17. Khan, M. (2020), "Mix suitable for concrete 3D printing: A review", Mater. Today Proc., 32, 831-837. http://doi.org/10.1016/j.matpr.2020.03.825.
  18. Klein, K. and Simon, D. (2006), "Effect of specimen composition on the strength development in cemented paste backfill", Can. Geotech. J., 43(3), 310-324. http://doi.org/10.1139/t06-005.
  19. Kruger, J., Zeranka, S. and Zijl, G.V. (2019), "3D concrete printing: A lower bound analytical modelfor buildability performance quantification", Autom. Constr., 106, 102904. http://doi.org/10.1016/j.autcon.2019.102904.
  20. Le, T.T., Austin, S.A., Lim, S., Buswell, R.A., Gibb, A.G. and Thorpe, T. (2012), "Mix design and fresh properties for high-performance printing concrete", Mater. Struct., 45(8), 1221-1232. http://doi.org/10.1617/s11527-012-9828-z.
  21. Lee, H., Kim, J.H.J., Moon, J.H., Kim, W.W. and Seo, E.A. (2020), "Experimental analysis on rheological properties for control of concrete extrudability", Adv. Concrete Constr., 9(1), 93-102. http://doi.org/10.12989/acc.2020.9.1.093.
  22. Lewis, J.A., Matsuyama, H., Kirby, G., Morissette, S. and Young, J.F. (2000), "Polyelectrolyte effects on the rheological properties of concentrated cement suspensions", J. Am. Ceram. Soc., 83(8), 1905-1913. http://doi.org/10.1111/j.1151-2916.2000.tb01489.x.
  23. Li, H., Liu, S. and Lin, L. (2016), "Rheological study on 3D printability of alginate hydrogel and effect of graphene oxide", Int. J. Bioprint., 2(2), 54-66. http://doi.org/10.18063/IJB.2016.02.007.
  24. Lim, S., Buswell, R.A., Le, T.T., Austin, S.A., Gibb, A.G. and Thorpe, T. (2012), "Developments in construction-scale additive manufacturing processes", Autom. Constr., 21, 262-268. http://doi.org/10.1016/j.autcon.2011.06.010.
  25. Chunlin, L., Kunpeng, Z. and Depeng, C. (2011), "Possibility of concrete prepared with steel slag as fine and coarse aggregates: A preliminary study", Proc. Eng., 24, 412-416. http://doi.org/10.1016/j.proeng.2011.11.2667.
  26. Li, Z., Ohkubo, T.A. and Tanigawa, Y. (2004), "Theoretical analysis of time-Dependence and thixotropy of fluidity for high fluidity concrete", J. Mater. Civil Eng., 16(3), 247-256. http://doi.org/10.3130/aijs.67.15_4.
  27. Marchon, D., Kawashima, S., Bessaies-Bey, H., Mantellato, S. and Ng, S. (2018), "Hydration and rheology control of concrete for digital fabrication: Potential admixtures and cement chemistry", Cement Concrete Res., 112, 96-110. http://doi.org/10.1016/j.cemconres.2018.05.014.
  28. Mason, B. (1994), "The constitution of some open-heart", Slag. J. Iron Steel Inst., 11, 69-80.
  29. Mewis, J. (1979), "Thixotropy-A general review", J. Non-Newtonian Fluid Mech., 6(1), 1-20. http://doi.org/10.1016/0377-0257(79)87001-9.
  30. Moller, P.C., Mewis, J. and Bonn, D. (2006), "Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice", Soft Matter, 2(4), 274-283. http://doi.org/10.1039/b517840a.
  31. Panda, B., Unluer, C. and Tan, M.J. (2019), "Extrusion and rheology characterization of geopolymer nanocomposites used in 3D printing", Compos. Part B Eng., 176, 107290. http://doi.org/10.1016/j.compositesb.2019.107290.
  32. Pasetto, M. and Baldo, N. (2010), "Experimental evaluation of high performance base course and road base asphalt concrete with electric arc furnace steel slags", J. Hazard. Mater., 181(1-3), 938-948. http://doi.org/10.1016/j.jhazmat.2010.05.104.
  33. Perrot, A., Rangeard, D. and Pierre, A. (2016), "Structural built-up of cement-based materials used for 3D-printing extrusion techniques", Mater. Struct., 49(4), 1213-1220. http://doi.org/10.1617/s11527-015-0571-0.
  34. Rahul, A.V., Santhanam, M., Meena, H. and Ghani, Z. (2019), "3D printable concrete: Mixture design and test methods", Cement Concrete Compos., 97, 13-23. http://doi.org/10.1016/j.cemconcomp.2018.12.014.
  35. Reiter, L., Wangler, T., Roussel, N. and Flatt, R.J. (2018), "The role of early age structural build-up in digital fabrication with concrete", Cement Concrete Res., 112, 86-95. http://doi.org/10.1016/j.cemconres.2018.05.011.
  36. Roussel, N., Ovarlez, G., Garrault, S. and Brumaud, C. (2012), "The origins of thixotropy of fresh cement pastes", Cement Concrete Res., 42(1), 148-157. http://doi.org/10.1016/j.cemconres.2011.09.004.
  37. Roussel, N. (2018), "Rheological requirements for printable concretes", Cement Concrete Res., 112, 76-85. http://doi.org/10.1016/j.cemconres.2018.04.005.
  38. Hamzeh, F., El Sakka, F., Senan, M.H. and Yassin, A.A. (2018), "Optimizing 3D printing path to minimize the formation of weak bonds", Creative Construction Conference 2018, Budapest University of Technology and Economics.
  39. Song, W., Zhu, Z., Peng, Y., Wan, Y., Xu, X., Pu, S. and Wei, Y. (2019), "Effect of steel slag on fresh, hardened and microstructural properties of high-calcium fly ash based geopolymers at standard curing condition", Constr. Build. Mater., 229, 116933. http://doi.org/10.1016/j.conbuildmat.2019.116933.
  40. Sorlini, S., Sanzeni, A. and Rondi, L. (2012), "Reuse of steel slag in bituminous paving mixtures", J. Hazard. Mater., 209, 84-91. http://doi.org/10.1016/j.jhazmat.2011.12.066.
  41. Spinelli, G., Lamberti, P., Tucci, V., Ivanova, R., Tabakova, S., Ivanov, E. and Silvestre, C. (2019), "Rheological and electrical behaviour of nanocarbon/poly (lactic) acid for 3D printing applications", Compos. Part B Eng., 167, 467-476. http://doi.org/10.1016/j.compositesb.2019.03.021.
  42. Wang, Q., Yan, P. and Mi, G. (2012), "Effect of blended steel slag-GBFS mineral admixture on hydration and strength of cement", Constr. Build. Mater., 35, 8-14. http://doi.org/10.1016/j.conbuildmat.2012.02.085.
  43. Wang, Q., Yan, P., Yang, J. and Zhang, B. (2013), "Influence of steel slag on mechanical properties and durability of concrete", Constr. Build. Mater., 47, 1414-1420. http://doi.org/10.1016/j.conbuildmat.2013.06.044.
  44. Fan, W.U., Faguang, Y.A.N.G. and Bolin, X.I.A.O. (2021), "Influence of steel slag dosage on early age strength and rheological properties of paste", Mater. Rep., 35(3), 3021-3025. (in Chinese)
  45. Wu, S., Xue, Y., Ye, Q. and Chen, Y. (2007), "Utilization of steel slag as aggregates for stone mastic asphalt (SMA) mixtures", Build. Envir., 42(7), 2580-2585. http://doi.org/10.1016/j.buildenv.2006.06.008.
  46. Yin, S., Wu, A., Hu, K., Wang, Y. and Zhang, Y. (2012), "The effect of solid components on the rheological and mechanical properties of cemented paste backfill", Min. Eng., 35, 61-66. http://doi.org/10.1016/j.mineng.2012.04.008.
  47. Zhao, Y., Duan, Y., Zhu, L., Wang, Y. and Jin, Z. (2021), "Characterization of coarse aggregate morphology and its effect on rheological and mechanical properties of fresh concrete", Constr. Build. Mater., 286, 122940. http://doi.org/10.1016/j.conbuildmat.2021.122940.