과제정보
The research work described in this paper was supported by a project from the National Natural Science Foundation of China (U1504513, U1905216).
참고문헌
- Akbar, E., Yaakob, Z., Kamarudin, S.K., Ismail, M. and Salimon, J. (2009), "Characteristic and composition of Jatropha curcas oil seed from Malaysia and its potential as biodiesel feedstock feedstock", Eur. J. Sci. Res., 29(3), 396-403.
- Bauchkar, S.D. and Chore, H.S. (2017), "Experimental studies on rheological properties of smart dynamic concrete", Adv. Concrete Constr., 5(3), 183-199. http://doi.org/10.12989/acc.2017.5.3.183.
- Bauchkar, S.D. and Chore, H.S. (2018), "Effect of PCE superplasticizers on rheological and strength properties of high strength self-consolidating concrete", Adv. Concrete Constr., 6(6), 561-583. http://doi.org/10.12989/acc.2018.6.6.561.
- Benyamina, S., Menadi, B., Bernard, S.K. and Kenai, S. (2019), "Performance of self-compacting concrete with manufactured crushed sand", Adv. Concrete Constr., 7(2), 87-96. http://doi.org/10.12989/acc.2019.7.2.087.
- Chen, M., Liu, B., Li, L., Cao, L., Huang, Y., Wang, S. and Cheng, X. (2020), "Rheological parameters, thixotropy and creep of 3D-printed calcium sulfoaluminate cement composites modified by bentonite", Compos. Part B Eng., 186, 107821. http://doi.org/10.1016/j.compositesb.2020.107821.
- Van Der Putten, J., Deprez, M., Cnudde, V., De Schutter, G. and Van Tittelboom, K. (2019), "Microstructural characterization of 3D printed cementitious materials", Mater., 12(18), 2993. http://doi.org/10.3390/ma12182993.
- Feys, D., Cepuritis, R., Jacobsen, S., Lesage, K., Secrieru, E. and Yahia, A. (2018), "Measuring rheological properties of cement pastes: Most common techniques, procedures and challenges", RILEM Tech. Lett., 2, 129-135. http://doi.org/10.21809/rilemtechlett.2017.43.
- GB/T 2419-2005. (2005), Test Method of Fluidity of Cement Mortar, GB/T 2419-2005, Standardization Administration of China, Beijing, China.
- Gosselin, C., Duballet, R., Roux, P., Gaudilliere, N., Dirrenberger, J. and Morel, P. (2016), "Large-scale 3D printing of ultra-high performance concrete-A new processing route for architects and builders", Mater. Des., 100, 102-109. http://doi.org/10.1016/j.matdes.2016.03.097.
- Guo, X., Yang, J. and Xiong, G. (2020), "Influence of supplementary cementitious materials on rheological properties of 3D printed fly ash based geopolymer", Cement Concrete Compos., 114, 103820. http://doi.org/10.1016/j.cemconcomp.2020.103820.
- Guo, Y., Xie, J., Zhao, J. and Zuo, K. (2019), "Utilization of unprocessed steel slag as fine aggregate in normal-and high-strength concrete", Constr. Build. Mater., 204, 41-49. http://doi.org/10.1016/j.conbuildmat.2019.01.178.
- Ma, G.W. and Wang, L. (2020), "3D printing key technologies for cementitious materials", First Ed, China Building Materials Press, Beijing, China.
- Motz, H. and Geiseler, J. (2001), "Products of steel slags an opportunity to save natural resources", Waste Manag., 21(3), 285-293. http://doi.org/10.1016/S0956-053X(00)00102-1.
- Han, F.H. and Zhang, Z.Q. (2018), "Properties of 5-year-old concrete containing steel slag powder", Powd. Tech., 334, 27-35. http://doi.org/10.1016/j.powtec.2018.04.054.
- Huang, Y., Xu, G.P., Cheng, H., Jiang, Z.H. and Yang, Y. (2014), "Analysis on chemical composition, micro-morphology and phase of typical steel slag", Bull. Chin. Ceram. Soc, 33, 1902-1907. http://doi.org/CNKI:SUN:GSYT.0.2014-08-008. (in Chinese)
- Jiang, H., Fall, M. and Cui, L. (2017), "Freezing behaviour of cemented paste backfill material in column experiments", Constr. Build. Mater., 147, 837-846. http://doi.org/10.1016/j.conbuildmat.2017.05.002.
- Khan, M. (2020), "Mix suitable for concrete 3D printing: A review", Mater. Today Proc., 32, 831-837. http://doi.org/10.1016/j.matpr.2020.03.825.
- Klein, K. and Simon, D. (2006), "Effect of specimen composition on the strength development in cemented paste backfill", Can. Geotech. J., 43(3), 310-324. http://doi.org/10.1139/t06-005.
- Kruger, J., Zeranka, S. and Zijl, G.V. (2019), "3D concrete printing: A lower bound analytical modelfor buildability performance quantification", Autom. Constr., 106, 102904. http://doi.org/10.1016/j.autcon.2019.102904.
- Le, T.T., Austin, S.A., Lim, S., Buswell, R.A., Gibb, A.G. and Thorpe, T. (2012), "Mix design and fresh properties for high-performance printing concrete", Mater. Struct., 45(8), 1221-1232. http://doi.org/10.1617/s11527-012-9828-z.
- Lee, H., Kim, J.H.J., Moon, J.H., Kim, W.W. and Seo, E.A. (2020), "Experimental analysis on rheological properties for control of concrete extrudability", Adv. Concrete Constr., 9(1), 93-102. http://doi.org/10.12989/acc.2020.9.1.093.
- Lewis, J.A., Matsuyama, H., Kirby, G., Morissette, S. and Young, J.F. (2000), "Polyelectrolyte effects on the rheological properties of concentrated cement suspensions", J. Am. Ceram. Soc., 83(8), 1905-1913. http://doi.org/10.1111/j.1151-2916.2000.tb01489.x.
- Li, H., Liu, S. and Lin, L. (2016), "Rheological study on 3D printability of alginate hydrogel and effect of graphene oxide", Int. J. Bioprint., 2(2), 54-66. http://doi.org/10.18063/IJB.2016.02.007.
- Lim, S., Buswell, R.A., Le, T.T., Austin, S.A., Gibb, A.G. and Thorpe, T. (2012), "Developments in construction-scale additive manufacturing processes", Autom. Constr., 21, 262-268. http://doi.org/10.1016/j.autcon.2011.06.010.
- Chunlin, L., Kunpeng, Z. and Depeng, C. (2011), "Possibility of concrete prepared with steel slag as fine and coarse aggregates: A preliminary study", Proc. Eng., 24, 412-416. http://doi.org/10.1016/j.proeng.2011.11.2667.
- Li, Z., Ohkubo, T.A. and Tanigawa, Y. (2004), "Theoretical analysis of time-Dependence and thixotropy of fluidity for high fluidity concrete", J. Mater. Civil Eng., 16(3), 247-256. http://doi.org/10.3130/aijs.67.15_4.
- Marchon, D., Kawashima, S., Bessaies-Bey, H., Mantellato, S. and Ng, S. (2018), "Hydration and rheology control of concrete for digital fabrication: Potential admixtures and cement chemistry", Cement Concrete Res., 112, 96-110. http://doi.org/10.1016/j.cemconres.2018.05.014.
- Mason, B. (1994), "The constitution of some open-heart", Slag. J. Iron Steel Inst., 11, 69-80.
- Mewis, J. (1979), "Thixotropy-A general review", J. Non-Newtonian Fluid Mech., 6(1), 1-20. http://doi.org/10.1016/0377-0257(79)87001-9.
- Moller, P.C., Mewis, J. and Bonn, D. (2006), "Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice", Soft Matter, 2(4), 274-283. http://doi.org/10.1039/b517840a.
- Panda, B., Unluer, C. and Tan, M.J. (2019), "Extrusion and rheology characterization of geopolymer nanocomposites used in 3D printing", Compos. Part B Eng., 176, 107290. http://doi.org/10.1016/j.compositesb.2019.107290.
- Pasetto, M. and Baldo, N. (2010), "Experimental evaluation of high performance base course and road base asphalt concrete with electric arc furnace steel slags", J. Hazard. Mater., 181(1-3), 938-948. http://doi.org/10.1016/j.jhazmat.2010.05.104.
- Perrot, A., Rangeard, D. and Pierre, A. (2016), "Structural built-up of cement-based materials used for 3D-printing extrusion techniques", Mater. Struct., 49(4), 1213-1220. http://doi.org/10.1617/s11527-015-0571-0.
- Rahul, A.V., Santhanam, M., Meena, H. and Ghani, Z. (2019), "3D printable concrete: Mixture design and test methods", Cement Concrete Compos., 97, 13-23. http://doi.org/10.1016/j.cemconcomp.2018.12.014.
- Reiter, L., Wangler, T., Roussel, N. and Flatt, R.J. (2018), "The role of early age structural build-up in digital fabrication with concrete", Cement Concrete Res., 112, 86-95. http://doi.org/10.1016/j.cemconres.2018.05.011.
- Roussel, N., Ovarlez, G., Garrault, S. and Brumaud, C. (2012), "The origins of thixotropy of fresh cement pastes", Cement Concrete Res., 42(1), 148-157. http://doi.org/10.1016/j.cemconres.2011.09.004.
- Roussel, N. (2018), "Rheological requirements for printable concretes", Cement Concrete Res., 112, 76-85. http://doi.org/10.1016/j.cemconres.2018.04.005.
- Hamzeh, F., El Sakka, F., Senan, M.H. and Yassin, A.A. (2018), "Optimizing 3D printing path to minimize the formation of weak bonds", Creative Construction Conference 2018, Budapest University of Technology and Economics.
- Song, W., Zhu, Z., Peng, Y., Wan, Y., Xu, X., Pu, S. and Wei, Y. (2019), "Effect of steel slag on fresh, hardened and microstructural properties of high-calcium fly ash based geopolymers at standard curing condition", Constr. Build. Mater., 229, 116933. http://doi.org/10.1016/j.conbuildmat.2019.116933.
- Sorlini, S., Sanzeni, A. and Rondi, L. (2012), "Reuse of steel slag in bituminous paving mixtures", J. Hazard. Mater., 209, 84-91. http://doi.org/10.1016/j.jhazmat.2011.12.066.
- Spinelli, G., Lamberti, P., Tucci, V., Ivanova, R., Tabakova, S., Ivanov, E. and Silvestre, C. (2019), "Rheological and electrical behaviour of nanocarbon/poly (lactic) acid for 3D printing applications", Compos. Part B Eng., 167, 467-476. http://doi.org/10.1016/j.compositesb.2019.03.021.
- Wang, Q., Yan, P. and Mi, G. (2012), "Effect of blended steel slag-GBFS mineral admixture on hydration and strength of cement", Constr. Build. Mater., 35, 8-14. http://doi.org/10.1016/j.conbuildmat.2012.02.085.
- Wang, Q., Yan, P., Yang, J. and Zhang, B. (2013), "Influence of steel slag on mechanical properties and durability of concrete", Constr. Build. Mater., 47, 1414-1420. http://doi.org/10.1016/j.conbuildmat.2013.06.044.
- Fan, W.U., Faguang, Y.A.N.G. and Bolin, X.I.A.O. (2021), "Influence of steel slag dosage on early age strength and rheological properties of paste", Mater. Rep., 35(3), 3021-3025. (in Chinese)
- Wu, S., Xue, Y., Ye, Q. and Chen, Y. (2007), "Utilization of steel slag as aggregates for stone mastic asphalt (SMA) mixtures", Build. Envir., 42(7), 2580-2585. http://doi.org/10.1016/j.buildenv.2006.06.008.
- Yin, S., Wu, A., Hu, K., Wang, Y. and Zhang, Y. (2012), "The effect of solid components on the rheological and mechanical properties of cemented paste backfill", Min. Eng., 35, 61-66. http://doi.org/10.1016/j.mineng.2012.04.008.
- Zhao, Y., Duan, Y., Zhu, L., Wang, Y. and Jin, Z. (2021), "Characterization of coarse aggregate morphology and its effect on rheological and mechanical properties of fresh concrete", Constr. Build. Mater., 286, 122940. http://doi.org/10.1016/j.conbuildmat.2021.122940.