Acknowledgement
The funding through sanction order of Works Department, Government of Odisha, Bhubaneswar, India vide letter no. 6890 dated 22nd Feb. 2015 and No Lab-E-451/2015 WE Dated. 12th June 2015 is hereby acknowledged.
References
- Adhikary, S.K., Ashish, D.K. and Rudzionis, Z. (2021), "Aerogel based thermal insulating cementitious composites: A review", Ener. Build., 245, 111058. https://doi.org/10.1016/j.enbuild.2021.111058.
- Adhikary, S.K., Ashish, D.K. and Rudzionis, Z. (2021a), "Expanded glass as light-weight aggregate in concrete-A review", J. Clean. Prod., 313, 127848. https://doi.org/10.1016/j.jclepro.2021.127848.
- Adhikary, S.K., Rudzionis, Z., Tuckute, S. and Ashish, D.K. (2021b), "Effects of carbon nanotubes on expanded glass and silica aerogel based lightweight concrete", Nat. Sci. Rep., 11(1), 1-11. https://www.nature.com/articles/s41598-021-81665-y. https://doi.org/10.1038/s41598-020-79139-8
- Arowojolu, O., Fina, J., Pruneda, A., Ibrahim, A. and Mahmoud, E. (2019), "Feasibility study on concrete performance made by partial replacement of cement with nanoglass powder and fly ash", Int. J. Civil Eng., 17(7), 1007-1014. https://doi.org/10.1007/s40999-018-0352-6.
- Ashish, D.K., Verma, S.K., Singh, J. and Sharma, N. (2018), "Strength and durability characteristics of bricks made using coal bottom and coal fly ash", Adv. Concrete Constr., 6(4), 407-422. https://doi.org/10.12989/acc.2018.6.4.407.
- Bentz, D.P. and Garboczi, E.J. (1991), "Simulation studies of the effects of mineral admixtures on the cement paste-aggregate interfacial zone", ACI Mater. J., 88, 518-529.
- Bijen, J.M.J.M. (1986), "Manufacturing processes of artificial lightweight aggregates from fly ash", Int. J. Cement Compos. Light. Concrete, 8(3), 191-199. https://doi.org/10.1016/0262-5075(86)90040-0.
- Celikten, S. (2022), "Properties of recycled steel fibre reinforced expanded perlite based geopolymer mortars", Adv. Concrete Constr., 13(1), 25-34. https://doi.org/10.12989/acc.2022.13.1.025
- Cerny, V., Kocianova, M. and Drochytka, R. (2017), "Possibilities of lightweight high strength concrete production from sintered fly ash aggregate", Proc. Eng., 195, 9-16. https://doi.org/10.1016/j.proeng.2017.04.517.
- Degirmenci, F.N. (2018), "Utilization of natural and waste pozzolans as an alternative resource of geopolymer mortar", Int. J. Civil Eng., 16(2), 179-188. https://doi.org/10.1007/s40999-016-0115-1
- Gomathi, P. and Sivakumar, A. (2015), "Accelerated curing effects on the mechanical performance of cold bonded and sintered fly ash aggregate concrete", Constr. Build. Mater., 77, 276-287. https://doi.org/10.1016/j.conbuildmat.2014.12.108.
- Harikrishnan, K.I. and Ramamurthy, K. (2004), "Study of parameters influencing the properties of sintered fly ash aggregates", Int. J. Solid. Waste Tech. Manag., 30(3), 136-142.
- Hu, Y., Hu, S., Yang, B. and Wang, S. (2020), "Effects of subsequent curing on chloride resistance and microstructure of steam-cured mortar", Adv. Concr. Constr., 9(5), 449-457. https://doi.org/10.12989/acc.2020.9.5.449.
- IS: 10262 (2009), Recommended Guidelines for Concrete Mix Design, Bureau of Indian Standards, New Delhi, India.
- IS: 1786 (2008), High Strength Steel Bars and Wires for Concrete Reinforcement-Specification, Bureau of Indian Standards, New Delhi, India.
- IS: 2386-Part III (1963), Method of Test for Aggregate for Concrete, Bureau of Indian Standards, New Delhi, India.
- IS: 2386-Part IV (1963), Methods of Test for Aggregates for Concrete, Bureau of Indian Standards, New Delhi, India.
- IS: 383 (1970), Specifications for coarse and fine aggregates from natural sources for concrete, Bureau of Indian Standards, New Delhi, India.
- IS: 456 (2000), Indian Standard Plain and Reinforced Concrete Code of Practice, Bureau of Indian Standards, New Delhi, India.
- IS: 516 (2004). Methods of Test for Strength of Concrete, Bureau of Indian Standards, New Delhi, India.
- IS: 5816 (1999), Splitting Tensile Strength of Concrete-Methods of Test, Bureau of Indian Standards, New Delhi, India.
- IS: 8112 (2013), Ordinary Portland Cement 43 grade-Specification, Bureau of Indian Standards, New Delhi, India.
- IS: 9103 (1999), Concrete Admixtures-Specification, Bureau of Indian Standards, New Delhi, India.
- Jagadeesan, K., Umarani, C., Jayanthi, S., Sundararajan, R. and Shanmugasundaram, S. (2014), "Study on Utilization of Fly Ash Aggregates in Concrete", Modern Appl. Sci., 4(5), 44-57. https://doi.org/10.5539/mas.v4n5p44.
- Jena, T. and Panda K.C. (2018), "Mechanical and durability properties of marine concrete using fly ash and silpozz", Adv. Concrete Constr., 6(1), 47-68. https://doi.org/10.12989/acc.2018.6.1.047.
- Joseph, G. and Ramamurthy, K. (2009), "Influence of fly ash on strength and sorption characteristics of cold-bonded fly ash aggregate concrete", Constr. Build. Mater., 23(5), 1862-1870. https://doi.org/10.1016/j.conbuildmat.2008.09.018
- Kayali, O. (2008), "Fly ash lightweight aggregates in high performance concrete", Constr. Build. Mater., 22(12), 2393-2399. https://doi.org/10.1016/j.conbuildmat.2007.09.001.
- Kockal, N.U. and Ozturan, T. (2010), "Effects of lightweight fly ash aggregate properties on the behavior of lightweight concretes", J. Hazard. Mater., 179, 954-965. https://doi.org/10.1016/j.jhazmat.2010.03.098.
- Kockal, N.U. and Ozturan, T. (2011a), "Characteristics of lightweight fly ash aggregates produced with different binders and heat treatments", Cement Concrete Compos., 33(1), 61-67. https://doi.org/10.1016/j.cemconcomp.2010.09.007.
- Kockal, N.U. and Ozturan, T. (2011b), "Optimization of properties of fly ash aggregates for high-strength lightweight concrete production", Mater. Des., 32(6), 3586-3593. https://doi.org/10.1016/j.matdes.2011.02.028.
- Kockal, N.U. and Ozturan, T. (2011c), "Durability of lightweight concretes with lightweight fly ash aggregates", Constr. Build. Mater., 25(3), 1430-1438. https://doi.org/10.1016/j.conbuildmat.2010.09.022.
- Kumar, V.P. and Prasad, D.R. (2019), "Influence of supplementary cementitious materials on strength and durability characteristics of concrete", Adv. Concrete Constr., 7(2), 75-85 https://doi.org/10.12989/acc.2019.7.2.075.
- Kurbetci, S., Nas, M. and Sahin, M. (2022), "Durability properties of mortars with fly ash containing recycled aggregates", Adv. Concrete Constr., 13(1), 101-111. https://doi.org/10.12989/acc.2022.13.1.101.
- Kurtoglu, A.E., Alzeebaree, R., Aljumaili, O., Nis, A., Gulsan, M.E., Humur, G. and Cevik, A. (2018), "Mechanical and durability properties of fly ash and slag based geopolymer concrete", Adv. Concrete Constr., 6(4), 345-362. https://doi.org/10.12989/acc.2018.6.4.345.
- Manikandan, R. and Ramamurthy, K. (2008), "Effect of curing method on characteristics of cold bonded fly ash aggregates", Cement Concrete Compos., 30(9), 848-853. https://doi.org/10.1016/j.cemconcomp.2008.06.006.
- Nadesan, M.S. and Dinakar, P. (2017), "Mix design and properties of fly ash waste lightweight aggregates in structural lightweight concrete", Case Stud. Constr. Mater., 7, 336-347. https://doi.org/10.1016/j.cscm.2017.09.005.
- Parveen and Singhal, D. (2017), "Development of mix design method for geopolymer concrete", Adv. Concrete Constr., 5(4), 377-390. https://doi.org/10.12989/acc.2017.5.4.377.
- Patil, A.A., Chore, H.S. and Dode, P.A. (2014), "Effect of curing condition on strength of geopolymer concrete", Adv. Concrete Constr., 2(1), 29-37. http://doi.org/10.12989/acc.2014.2.1.029.
- Ramamurthy, K. and Harikrishnan, K.I. (2006), "Influence of binders on properties of sintered fly ash aggregate", Cement Concrete Compos., 28(1), 33-38. https://doi.org/10.1016/j.cemconcomp.2005.06.005.
- Ramme, B.B.W., Nechvatal, T., Tarun, R. and Kolbeck, H.J. (1995), Center for By-Products Utilization.
- Rudzionis, Z., Adhikary, S.K., Manhanga, F.C., Ashish, D.K., Ivanauskas, R., Stelmokaitis, G. and Navickas, A.A. (2021), "Natural zeolite powder in cementitious composites and its application as heavy metal absorbents", J. Build. Eng., 43, 103085. https://doi.org/10.1016/j.jobe.2021.103085.
- Shaikh, F., Kerai, S. and Kerai, S. (2015), "Effect of micro-silica on mechanical and durability properties of high volume fly ash recycled aggregate concretes (HVFA-RAC)", Adv. Concrete Constr., 3(4), 317-331. http://doi.org/10.12989/acc.2015.3.4.317.
- Shariq, M., Pal, S., Chaubey, R. and Masood, A. (2022), "An experimental and analytical study into the strength of hooked-end steel fiber reinforced HVFA concrete", Adv. Concrete Constr., 13(1), 35-43. https://doi.org/10.12989/acc.2022.13.1.035.
- Sharma, R. and Bansal, P.P. (2019), "Efficacy of supplementary cementitious material and hybrid fiber to develop the ultra high performance hybrid fiber reinforced concrete", Adv. Concrete Constr., 8(1), 21-31. https://doi.org/10.12989/acc.2019.8.1.021.
- Shivaprasad, K.N. and Das, B.B. (2018), "Determination of optimized geopolymerization factors on the properties of pelletized fly ash aggregates", Constr. Build. Mater., 163, 428-437. https://doi.org/10.1016/j.conbuildmat.2017.12.038.
- Sivakumar, A. and Gomathi, P. (2012), "Pelletized fly ash lightweight aggregate concrete: A promising material", J. Civil Eng. Constr. Tech., 3(2), 42-48. https://doi.org/10.5897/jbd11.088.
- Sunil, B.M., Manjunatha, L.S., Ravi, L. and Yaragal, S.C. (2015), "Potential use of mine tailings and fly ash in concrete", Adv. Concrete Constr., 3(1), 055-069. http://doi.org/10.12989/acc.2015.3.1.055.
- Thomas, J. and Harilal, B. (2014), "Fresh and hardened properties of concrete containing cold bonded aggregates", Adv. Concrete Constr., 2(2), 77-89. http://doi.org/10.12989/acc.2014.2.2.077.
- Vali, K.S. and Murugan, S.B. (2020), "Effect of different binders on cold-bonded artificial lightweight aggregate properties", Adv. Concrete Constr., 9(2), 183-193. https://doi.org/10.12989/acc.2020.9.2.183
- Verma, C.L., Handa, S.K., Jain, S.K. and Yadav, R.K. (1998), "Techno-commercial perspective study for sintered fly ash light-weight aggregates in India", Constr. Build. Mater., 12, 341-346. https://doi.org/10.1016/S0950-0618(98)00022-1.
- Verma, S.K., Ashish, D.K. and Singh, J. (2016), "Performance of bricks and brick masonry prism made using coal fly ash and coal bottom ash", Adv. Concrete Constr., 4(4), 231-242. https://doi.org/10.12989/acc.2016.4.4.231.
- Wasserman, R. and Bentur, A. (1996), "Interfacial interactions in lightweight aggregate concretes and their influence on the concrete strength", Cement Concrete Compos., 18(1), 67-76. https://doi.org/10.1016/0958-9465(96)00002-9.
- Wongsa, A., Zaetang, Y., Sata, V. and Chindaprasirt, P. (2016), "Properties of lightweight fly ash geopolymer concrete containing bottom ash as aggregates", Constr. Build. Mater., 111, 637-643. https://doi.org/10.1016/j.conbuildmat.2016.02.135.
- Wu, C.H., Chen, C.J., Lin, Y.F. and Lin, S.K. (2021), "Improvement of bond strength and durability of concrete incorporating high volumes of class F fly ash", Adv. Concrete Constr., 12(5), 367-375. https://doi.org/10.12989/acc.2021.12.6.367.
- Xu, G. and Shi, X., 2018, "Characteristics and applications of fly ash as a sustainable construction material: A state-of-the-art review", Res. Conserv. Recycl., 136, 95-109. https://doi.org/10.1016/j.resconrec.2018.04.010.
- Zafar, I., Tahir, M.A., Hameed, R., Rashid, K. and Ju, M. (2022), "Reactivity of aluminosilicate materials and synthesis of geopolymer mortar under ambient and hot curing condition", Adv. Concrete Constr., 13(1), 71-81. https://doi.org/10.12989/acc.2022.13.1.071.