DOI QR코드

DOI QR Code

Effectiveness study of a cement mortar coating based on dune sand on the carbonation of concrete

  • Korichi, Youssef (Civil Engineering Research Laboratory, Ammar Thélidji University of Laghouat) ;
  • Merah, Ahmed (Civil Engineering Research Laboratory, Ammar Thélidji University of Laghouat) ;
  • Khenfer, Med Mouldi (Civil Engineering Research Laboratory, Ammar Thélidji University of Laghouat) ;
  • Krobba, Benharzallah (Structure Rehabilitation and Materials Laboratory (SREML), Ammar Thélidji University of Laghouat)
  • Received : 2021.05.15
  • Accepted : 2022.04.12
  • Published : 2022.04.25

Abstract

Reinforced concrete structures are exposed throughout their lifetime to the phenomenon of carbonation, which considerably influences their durability by causing corrosion of the reinforcements. The fight against this phenomenon is usually ensured by anti-carbonation coatings which have the possibility of limiting the permeability to carbon dioxide or with coatings which absorb the CO2 present in the air. A coating with good crack-bridging (sealing) capacity will prevent water from entering through existing cracks in concrete. Despite the beneficial effect of these coatings, their durability decreases considerably over time with temperature and humidity. In order to use coatings made from local materials, not presenting any danger, available in abundance in our country, very economical and easy to operate is the main objective of this work. This paper aim is to contribute to the formulation of a corrected dune sand-based mortar as an anti-carbonation coating for concrete. The results obtained show that the cement mortar based on dune sand formulated has a very satisfactory compressive strength, a very low water porosity compared to ordinary cement mortar and that this mortar allows an improvement in the protection of the concrete against the carbonation of 60% compared to ordinary cement mortar based on alluvial sand. Moreover, the formulated cement mortars based on dune sand have good adhesion to the concrete support, their adhesion strengths are greater than 1.5MPa recommended by the standards.

Keywords

References

  1. Aguiar, J.B. and Junior, C. (2013), "Carbonation of surface protected concrete", Constr. Build. Mater., 49, 478-483. https://doi.org/10.1016/j.conbuildmat.2013.08.058.
  2. Almusallam, A.A., Khan, F.M., Dulaijan, S.U. and Al-Amoudi, O.S.B. (2003), "Effectiveness of surface coatings in improving concrete durability", Cement Concrete Compos, 25(4-5), 473-481. https://doi.org/10.1016/S0958-9465(02)00087-2.
  3. Arredondo Rea, S.P., Corral Higuera, R., Gomez Soberon, J.M. V., Castorena Gonzalez, J.H., Orozco Carmona, V. and Almaral Sanchez, J.L. (2012), "Carbonation rate and reinforcing steel corrosion of concretes with recycled concrete aggregates and supplementary cementing materials", Int. J. Electrochem. Sci., 7, 1602-1610.
  4. Aziez, M. N. and Bezzar, A. (2018), "Effect of temperature and type of sand on the magnesium sulphate attack in sulphate resisting Portland cement mortars", J. Adhes. Sci. Tech., 32(3), 272-290. https://doi.org/10.1080/01694243.2017.1353398.
  5. Barroso De Aguiar, J. and Cruz, M.D. (1998), "A study of the adhesion between hydraulic mortars and concrete", J. Adhes. Sci. Tech., 12(11), 1243-1251. https://doi.org/10.1163/156856198X00416.
  6. Bederina, M., Makhloufi, Z. and Bouziani, T. (2011), "Effect of limestone fillers the physic-mechanical properties of limestone concrete", Phys. Proc., 21, 28-34. https://doi.org/10.1016/j.phpro.2011.10.005.
  7. Bederina, M., Makhloufi, Z., Bounoua, A., Bouziani, T. and Queneudec, M. (2013), "Effect of partial and total replacement of siliceous river sand with limestone crushed sand on the durability of mortars exposed to chemical solutions", Constr. Build. Mater., 47, 146-158. https://doi.org/10.1016/j.conbuildmat.2013.05.037.
  8. Belferrag, A. (2016), Contribution a l'amelioration Des Proprietes Mecaniques et Rheologiques Des Betons de Sable de Dunes, Ph.D. Thesis of Philosophy, Universite Mohamed KhiderBiskra.
  9. Benabed, B., Kadri, E.H., Azzouz, L. and Kenai, S. (2012), "Properties of self-compacting mortar made with various types of sand", Cement Concrete Compos., 34(10), 1167-1173. https://doi.org/10.1016/j.cemconcomp.2012.07.007.
  10. Benchiheub, D., Amouri, C., Houari, H. and Belachia, M. (2018), "Effect of natural pozzolana and polypropylene fibers on the performance of lime mortar for old buildings restoration", J. Adhes. Sci. Tech., 32(12), 1324-1340. https://doi.org/10.1080/01694243.2017.1409068.
  11. Beushausen, H. and Burmeister, N. (2015), "The use of surface coatings to increase the service life of reinforced concrete structures for durability class XC", Mater. Struct., 48(4), 1243-1252. https://doi.org/10.1617/s11527-013-0229-8.
  12. Bouziani, T., Bederina, M. and Hadjoudja, M. (2012), "Effect of dune sand on the properties of flowing sand-concrete (FSC)", Int. J. Concrete Struct. Mater., 6(1), 59-64. https://doi.org/10.1007/s40069-012-0006-z.
  13. Chabil, F.Z.D. (2009), "Carbonatation de Betons Adjuvantes a Base de Ressources Locales Algeriennes", Ph.D. Thesis of Philosophy.
  14. de Oliveira Andrade, J.J., Possan, E., Squiavon, J.Z. and Ortolan, T.L.P. (2018), "Evaluation of mechanical properties and carbonation of mortars produced with construction and demolition waste", Constr. Build. Mater., 161, 70-83. https://doi.org/10.1016/j.conbuildmat.2017.11.089.
  15. Dhia, M.B. (1997), "Quelques particularites de l'utilisation du sable de dune en construction routiere en milieu saharien", Bulletin-Laboratoires Des Ponts et Chaussees, 33-42.
  16. ELENGA, R.G. (2019), Proprietes des sables utilises dans la construction au Congo et formulation d'un sable normalise local. Sciences Appliquees et de l'Ingenieur, 3(1), 7-13.
  17. Gagne, R. (2000), "Durabilite et reparations du beton", Sherbrooke: Notes de Cours, Universite de Sherbrooke.
  18. Glencross-Grant, R. and Walker, P. (2003), "Survey of building sands in Australia", Constr. Build. Mater., 17(4), 259-268. https://doi.org/10.1016/S0950-0618(02)00115-0.
  19. Huang, N.M., Chang, J.J. and Liang, M.T. (2012), "Effect of plastering on the carbonation of a 35-year-old reinforced concrete building" Constr. Build. Mater., 29, 206-214. https://doi.org/10.1016/j.conbuildmat.2011.08.049.
  20. Khouadjia, M.L.K., Mezghiche, B. and Drissi, M. (2016), "Evaluation experimentale et numerique de la resistance a la compression des betons a base des sables de carriere modifies avec du sable de dune", Courrier du Savoir, 20, 123-128.
  21. Li, Q., Li, Z., Yuan, G. and Shu, Q. (2013), "The effect of a proprietary inorganic coating on compressive strength and carbonation depth of simulated fire-damaged concrete", Mag. Concrete Res., 65(11), 651-659. https://doi.org/10.1680/macr.12.00119.
  22. Lopes, A.C.A. (n.d.). "Assessment of the variability of the pull-off technique for measuring tensile adhesion strength on ceramic tile claddings and mortars".
  23. Merah, A. (2021), "Concrete anti-carbonation coatings: A review", J. Adhes. Sci. Tech., 35(4), 337-356. https://doi.org/10.1080/01694243.2020.1803594.
  24. Merah, A., Khenfer, M.M. and Korichi, Y. (2015), "The effect of industrial coating type acrylic and epoxy resins on the durability of concrete subjected to accelerated carbonation", J. Adhes. Sci. Tech., 29(22), 2446-2460. https://doi.org/10.1080/01694243.2015.1067004.
  25. Meziane, E.H., Ezziane, K., Kenai, S. and Kadri, A. (2015), "Mechanical, hydration, and durability modifications provided to mortar made with crushed sand and blended cements", J. Adhes. Sci. Tech., 29(18), 1987-2005, https://doi.org/10.1080/01694243.2015.1048931.
  26. Mills, E.D. (2013), Planning: Buildings for Habitation, Commerce and Industry, Newnes.
  27. Moon, H.Y., Shin, D.G. and Choi, D.S. (2007), "Evaluation of the durability of mortar and concrete applied with inorganic coating material and surface treatment system", Constr. Build. Mater., 21(2), 362-369. https://doi.org/10.1016/j.conbuildmat.2005.08.012.
  28. Pan, X., Shi, C., Zhang, J., Jia, L. and Chong, L. (2018), "Effect of inorganic surface treatment on surface hardness and carbonation of cement-based materials", Cement Concrete Compos., 90, 218-224. https://doi.org/10.1016/j.cemconcomp.2018.03.026.
  29. Pan, X., Shi, Z., Shi, C., Ling, T. and Li, N. (2017a), "A review on surface treatment for concrete-Part 1: Types and mechanisms", Constr. Build. Mater., 132(1), 578-590. https://doi.org/10.1016/j.conbuildmat.2016.12.025.
  30. Pan, X., Shi, Z., Shi, C., Ling, T.C. and Li, N. (2017b), "A review on surface treatment for concrete-Part 2: Performance", Constr. Build. Mater., 133, 81-90. https://doi.org/10.1016/j.conbuildmat.2016.11.128.
  31. Pigino, B., Leemann, A., Franzoni, E. and Lura, P. (2012), "Ethyl silicate for surface treatment of concrete-Part II: Characteristics and performance", Cement Concrete Compos., 34(3), 313-321. https://doi.org/10.1016/j.cemconcomp.2011.11.021.
  32. Pollet, V., Dooms, B. and Mosselmans, G. (2007), "Corrosion des armatures induite par la carbonatation du beton: Comment s' en premunir", Les dossiers du CSTC, 2(3), 1-7.
  33. Qian, Y., Zhang, D. and Ueda, T. (2014), "Tensile bond between substrate concrete and normal repairing mortar under freeze-thaw cycles". https://doi.org/10.5703/1288284315427.
  34. Rathinam, K., Kanagarajan, V. and Banu, S. (2020), "Evaluation of protective coatings for geopolymer mortar under aggressive environment", Adv. Mater. Res., 9(3), 219-231. https://doi.org/10.12989/amr.2020.9.3.219.
  35. Ruiz, C. C., Caballero, J.L., Martinez, J.H. and Aperador, W.A. (2020), "Algorithms to measure carbonation depth in concrete structures sprayed with a phenolphthalein solution", Adv. Concrete Constr., 9(3), 257-265. http://doi.org/10.12989/acc.2020.9.3.257.
  36. Sanal, I., Yalcin, B., Yalcin, I.E. and Arda, L. (2021), "Application of poly (vinyl acetate) and poly (1, 4-butylene adipate) hydrophobic surface coatings on cementitious mortar specimens", Adv. Concrete Constr., 11(4), 323-333. http://doi.org/10.12989/acc.2021.11.4.323.
  37. Sanjuan, M.A. and del Olmo, C. (2001), "Carbonation resistance of one industrial mortar used as a concrete coating", Build. Envir., 36(8), 949-953. https://doi.org/10.1016/S0360-1323(00)00045-7.
  38. Saricimen, H., Maslehuddin, M., Iob, A. and Eid, O.A. (1996), "Evaluation of a surface coating in retarding reinforcement corrosion", Constr. Build. Mater., 10(7), 507-513. https://doi.org/10.1016/0950-0618(96)00013-X.
  39. Seif, E.S.S.A. and Sedek, E.S. (2013), "Performance of cement mortar made with fine aggregates of dune sand, Kharga Oasis, Western Desert, Egypt: an experimental study", Jordan J. Civil Eng., 7(3), 270-284.
  40. Shaw, E.J. (1910), "Adhesion of cement mortars".
  41. Souza, A.T., Riccio, L.A., Laquini, G.C. and dos Santos, W.J. (2018), "Behaviour of Mortar Coatings Subjected to Extreme Conditions: Lack of curing and no substrate moistening", Int. J. Sci. Eng. Invest., 7(75), 53-59.
  42. Stamapoulos, A.C. and Kotzias, P.C. (1971), "Concrete without coarse aggregates", ACI J. Sept..
  43. Stehlik, M. and Novak, J. (2011), "Verification of the effect of concrete surface protection on the permeability of acid gases using accelerated carbonation depth test in an atmosphere of 98% CO2", Ceramics-Silikaty, 55(1), 79-84.
  44. Swamy, R.N. and Tanikawa, S. (1993), "An external surface coating to protect concrete and steel from aggressive environments", Mater. Struct., 26(8), 465-478. https://doi.org/10.1007/BF02472806.
  45. Tsao, W.H., Liang, M.T., Chang, J.J. and Huang, N.M. (2015), "Effect of mortar coating on concrete carbonation", J. Marine Sci. Tech., 23(4), 4.
  46. Wang, X.Y. and Lee, H.S. (2019), "Microstructure modeling of carbonation of metakaolin blended concrete", Adv. Concrete Constr., 7(3), 167-174. https://doi.org/10.12989/acc.2019.7.3.167.
  47. Zafeiropoulou, T., Rakanta, E. and Batis, G. (2011), "Performance evaluation of organic coatings against corrosion in reinforced cement mortars", Prog. Organic Coat., 72(1-2), 175-180. https://doi.org/10.1016/j.porgcoat.2011.04.005.
  48. Zaitri, R., Guettala, S. and Bederina, M. (2018), "Physicomechanical properties of mortars based on the addition of dune sand powder and the recycled fines using the mixture design modelling approach", J. Adhes. Sci. Tech., 32(15), 1613-1628. https://doi.org/10.1080/01694243.2018.1434032.
  49. Zanelato, E.B., Alexandre, J., de Azevedo, A.R.G. and Marvila, M.T. (2019), "Evaluation of roughcast on the adhesion mechanisms of mortars on ceramic substrates", Mater. Struct., 52(3), 53. https://doi.org/10.1617/s11527-019-1353-x.
  50. Zeghichi, L., Lahmadi, A. and Benghazi, Z. (2012), "Contribution a l'etude des caracteristiques du sable de dune et de son effet sur le comportement des betons autoplacants".
  51. Zhang, G., Xie, Q., Ma, C. and Zhang, G. (2018), "Permeable epoxy coating with reactive solvent for anticorrosion of concrete", Prog. Organic Coat., 117, 290. https://doi.org/10.1016/j.porgcoat.2017.12.018.