Acknowledgement
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1F1A1052050)
References
- Adillah, S. U., & Purnawan, A. (2020). Analysis of the Fulfillment of Labor Social Security as a Work of Legal Protection. Journal of Morality and Legal Culture, 1(1), 32-37. https://doi.org/10.20961/jmail.v1i1.44757
- Akinlolu, M., Haupt, T. C., Edwards, D. J., & Simpeh, F. (2020). A bibliometric review of the status and emerging research trends in construction safety management technologies. International Journal of Construction Management, 1-13.
- Bansal, V. K. (2011). Application of geographic information systems in construction safety planning. International Journal of Project Management, 29(1), 66-77. https://doi.org/10.1016/j.ijproman.2010.01.007
- Baker, H., Hallowell, M. R., & Tixier, A. J. P. (2020). AI-based prediction of independent construction safety outcomes from universal attributes. Automation in Construction, 118, 103146. https://doi.org/10.1016/j.autcon.2020.103146
- Cobo, L. C., Isbell Jr, C. L., & Thomaz, A. L. (2013). Object focused q-learning for autonomous agents. Georgia Institute of Technology.
- Chakkravarthy, R. (2019). Artificial intelligence for construction safety. Professional Safety, 64(1), 46.
- Carbonari, A., Giretti, A., & Naticchia, B. (2011). A proactive system for real-time safety management in construction sites. Automation in construction, 20(6), 686-698. https://doi.org/10.1016/j.autcon.2011.04.019
- Chian, E., Fang, W., Goh, Y. M., & Tian, J. (2021). Computer vision approaches for detecting missing barricades. Automation in Construction, 131, 103862. https://doi.org/10.1016/j.autcon.2021.103862
- Ding, L., Fang, W., Luo, H., Love, P. E., Zhong, B., & Ouyang, X. (2018). A deep hybrid learning model to detect unsafe behavior: Integrating convolution neural networks and long short-term memory. Automation in construction, 86, 118-124. https://doi.org/10.1016/j.autcon.2017.11.002
- Fang, Q., Li, H., Luo, X., Ding, L., Luo, H., Rose, T. M., & An, W. (2018). Detecting non-hardhat-use by a deep learning method from far-field surveillance videos. Automation in Construction, 85, 1-9. https://doi.org/10.1016/j.autcon.2017.09.018
- Gheisari, M., & Esmaeili, B. (2016). Unmanned aerial systems (UAS) for construction safety applications. In Construction Research Congress 2016 (pp. 2642-2650).
- Goodfellow, I., Bengio, Y., & Courville, A. (2016). Machine learning basics. Deep learning, 1(7), 98-164.
- Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 1440-1448).
- Gong, J., & Caldas, C. H. (2010). Computer vision-based video interpretation model for automated productivity analysis of construction operations. Journal of Computing in Civil Engineering, 24(3), 252-263. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000027
- Goertzel, B. (2007). Artificial general intelligence (Vol. 2). C. Pennachin (Ed.). New York: Springer.
- Gu, H. M., Seo, J. H., & Choo, S. Y. (2019). A Development of Facade Dataset Construction Technology Using Deep Learning-based Automatic Image Labeling. Journal of the Architectural Institute of Korea Planning & Design, 35(12), 43-53. https://doi.org/10.5659/JAIK_PD.2019.35.12.43
- Han, G., Oh, T. M., Kim, H., Song, K. I., Kim, Y., & Kwon, T. H. (2019). Determination of Crack Signals Using the Deep Learning Technique Based on a 1D Convolutional Neural Network for Smart Detection of Structural Damage Cracking. Journal of the Korean Society of Hazard Mitigation, 19(4), 1-7.
- Han, J., Zhang, D., Cheng, G., Liu, N., & Xu, D. (2018). Advanced deep-learning techniques for salient and category-specific object detection: a survey. IEEE Signal Processing Magazine, 35(1), 84-100. https://doi.org/10.1109/msp.2017.2749125
- Heinrich, H. W. (1980). Industrial Prevention: A Safety management Approach.
- Kang, K., & Ryu, H. (2019). Predicting types of occupational accidents at construction sites in Korea using random forest model. Safety Science, 120, 226-236. https://doi.org/10.1016/j.ssci.2019.06.034
- Klein, J. A. (2009). Two centuries of process safety at DuPont. Process Safety Progress, 28(2), 114-122. https://doi.org/10.1002/prs.10309
- Kymmell, W. (2008). Building information modeling: Planning and managing construction projects with 4D CAD and simulations (McGraw-Hill construction series). McGraw-Hill Education.
- Khosravi, Y., Asilian-Mahabadi, H., Hajizadeh, E., Hassanzadeh-Rangi, N., Bastani, H., & Behzadan, A. H. (2014). Factors influencing unsafe behaviors and accidents on construction sites: A review. International journal of occupational safety and ergonomics, 20(1), 111-125. https://doi.org/10.1080/10803548.2014.11077023
- Konstantinou, E., & Brilakis, I. (2018). Matching construction workers across views for automated 3D vision tracking on-site. Journal of Construction Engineering and Management, 144(7), 04018061. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001508
- Kolar, Z., Chen, H., & Luo, X. (2018). Transfer learning and deep convolutional neural networks for safety guardrail detection in 2D images. Automation in Construction, 89, 58-70. https://doi.org/10.1016/j.autcon.2018.01.003
- Lee, J. H., Lee, R. W., Hong, S. T., & Kim, Y. G. (2020). Image Processing System based on Deep Learning for Safety of Heat Treatment Equipment. The Journal of the Institute of Internet, Broadcasting and Communication, 20(6), 77-83. https://doi.org/10.7236/JIIBC.2020.20.6.77
- Lee, H. S., Lee, K. P., Park, M. S., Kim, H. S., & Lee, S. B. (2009). A Construction safety management system based on Building Information Modeling and Real-time Locating System. Korean Journal of Construction Engineering and Management, 10(6), 135-145.
- Li, R. Y. M., & Ng, D. P. L. (2017). Wearable robotics, industrial robots and construction worker's safety and health. In International Conference on Applied Human Factors and Ergonomics (pp. 31-36). Springer, Cham.
- Liu, H., & Tian, G. (2019). Building engineering safety risk assessment and early warning mechanism construction based on distributed machine learning algorithm. Safety Science, 120, 764-771. https://doi.org/10.1016/j.ssci.2019.08.022
- Lu, W., Huang, G. Q., & Li, H. (2011). Scenarios for applying RFID technology in construction project management. Automation in construction, 20(2), 101-106. https://doi.org/10.1016/j.autcon.2010.09.007
- Lee, J. M., Park, S. H., Cho, S. H., & Kim, J. H. (2021). Comparison of Models to Forecast Real Estates Index Introducing Machine Learning. Journal of the Architectural Institute of Korea, 37(1), 191-199. https://doi.org/10.5659/JAIK.2021.37.1.191
- Na, S., Xumin, L., & Yong, G. (2010). Research on k-means clustering algorithm: An improved k-means clustering algorithm. In 2010 Third International Symposium on intelligent information technology and security informatics (pp. 63-67). Ieee.
- O'Byrne, M., Schoefs, F., Ghosh, B., & Pakrashi, V. (2013). Texture analysis based damage detection of ageing infrastructural elements. Computer-Aided Civil and Infrastructure Engineering, 28(3), 162-177. https://doi.org/10.1111/j.1467-8667.2012.00790.x
- Poh, C. Q., Ubeynarayana, C. U., & Goh, Y. M. (2018). Safety leading indicators for construction sites: A machine learning approach. Automation in construction, 93, 375-386. https://doi.org/10.1016/j.autcon.2018.03.022
- Peng, X., & Schmid, C. (2016). Multi-region two-stream R-CNN for action detection. In European conference on computer vision (pp. 744-759). Springer, Cham.
- Perlman, A., Sacks, R., & Barak, R. (2014). Hazard recognition and risk perception in construction. Safety science, 64, 22-31. https://doi.org/10.1016/j.ssci.2013.11.019
- Park, C. S., & Kim, H. J. (2013). A framework for construction safety management and visualization system. Automation in Construction, 33, 95-103. https://doi.org/10.1016/j.autcon.2012.09.012
- Rho, J., Park, M., & Lee, H. S. (2020). Automated Construction Progress Management Using Computer Vision-based CNN Model and BIM. Korean Journal of Construction Engineering and Management, 21(5), 11-19. https://doi.org/10.6106/KJCEM.2020.21.5.011
- Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, 28.
- Roberts, D., Bretl, T., & Golparvar-Fard, M. (2017). Detecting and classifying cranes using camera-equipped UAVs for monitoring crane-related safety hazards. In Computing in Civil Engineering 2017 (pp. 442-449).
- Rubaiyat, A. H., Toma, T. T., Kalantari-Khandani, M., Rahman, S. A., Chen, L., Ye, Y., & Pan, C. S. (2016). Automatic detection of helmet uses for construction safety. In 2016 IEEE/WIC/ACM International Conference on Web Intelligence Workshops (WIW) (pp. 135-142). IEEE.
- Shao, B., Hu, Z., Liu, Q., Chen, S., & He, W. (2019). Fatal accident patterns of building construction activities in China. Safety science, 111, 253-263. https://doi.org/10.1016/j.ssci.2018.07.019
- Shin, J., Kim, Y., & Kim, C. (2021). The perception of occupational safety and health (OSH) regulation and innovation efficiency in the construction industry: evidence from South Korea. International journal of environmental research and public health, 18(5), 2334. https://doi.org/10.3390/ijerph18052334
- Sakhakarmi, S., Park, J., & Cho, C. (2019). Enhanced machine learning classification accuracy for scaffolding safety using increased features. Journal of construction engineering and management, 145(2), pp. 04018133. https://doi.org/10.1061/(asce)co.1943-7862.0001601
- Seong, H., Son, H., & Kim, C. (2018). A comparative study of machine learning classification for color-based safety vest detection on construction-site images. KSCE Journal of Civil Engineering, 22(11), 4254-4262. https://doi.org/10.1007/s12205-017-1730-3
- Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
- Tixier, A. J. P., Hallowell, M. R., Rajagopalan, B., & Bowman, D. (2016). Application of machine learning to construction injury prediction. Automation in construction, 69, 102-114. https://doi.org/10.1016/j.autcon.2016.05.016
- Tian, S. C., Li, H. X., & Wang, L. (2006). Three types hazard theory and prevention of coalmine accidents. Meitan Xuebao, 31(6), 706-710.
- Tang, S., & Golparvar-Fard, M. (2021). Machine Learning-Based Risk Analysis for Construction Worker Safety from Ubiquitous Site Photos and Videos. Journal of Computing in Civil Engineering, 35(6), pp. 04021020. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000979
- Uijlings, J. R., Van De Sande, K. E., Gevers, T., & Smeulders, A. W. (2013). Selective search for object recognition. International journal of computer vision, 104(2), 154-171. https://doi.org/10.1007/s11263-013-0620-5
- Wu, L., Mokhtari, S., Nazef, A., Nam, B., & Yun, H. B. (2016). Improvement of crack-detection accuracy using a novel crack defragmentation technique in image-based road assessment. Journal of Computing in Civil Engineering, 30(1), 04014118. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000451
- Xu, Y., Zhou, Y., Sekula, P., & Ding, L. (2021). Machine learning in construction: From shallow to deep learning. Developments in the Built Environment, 6, 100045. https://doi.org/10.1016/j.dibe.2021.100045
- Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In European conference on computer vision (pp. 818-833). Springer, Cham.
- Zhu, R., Hu, X., Hou, J., & Li, X. (2021). Application of machine learning techniques for predicting the consequences of construction accidents in China. Process Safety and Environmental Protection, 145, 293-302. https://doi.org/10.1016/j.psep.2020.08.006