과제정보
This work was supported by funding from ANR (project MS3C), MEAE (project CESPA) and IUF (project MS1479). All this support is gratefully acknowledged.
참고문헌
- Arnold, L. (1974), Stochastic Differential Equations: Theory and Applications, John Wiley.
- Cai, G.Q. and Lin, Y.K. (1988), "On exact stationary solutions of equivalent non-linear stochastic systems", Int. J. Nonlin. Mech., 23(4), 315-325. https://doi.org/10.1016/0020-7462(88)90028-5
- Clough, R.W. and Penzien, J. (2006), Dynamics of Structures, MsGraw-Hill.
- Culver, D., McHugh, K.A. and Dowell, E.H. (2019), "An assessment and extension of geometrically nonlinear beam theories", Mech. Syst. Signal Pr., 134, 106340. https://doi.org/10.1016/j.ymssp.2019.106340.
- Dujc, J., Brank, B. and Ibrahimbegovic, A. (2010), "Multi-scale computational model for failure analysis of metal frames that includes softening and local buckling", Comput. Meth. Appl. Mech. Eng., 199(21-22), 1371-1385. https://doi.org/10.1016/j.cma.2009.09.003.
- Ethier, S.N and Kurtz, T.G. (2009), Markov Processes: Characterization and Convergence, Vol. 282, John Wiley & Sons.
- Gasparini, A.M., Saetta, A.V. and Vitaliani, R.V. (1995), "On the stability and instability regions of nonconservative continuous system under partially follower forces", Comput. Meth. Appl. Mech. Eng., 124, 63-78. https://doi.org/10.1016/0045-7825(94)00756-D.
- Guckenheimer, J. and Holmes, Ph.J. (2013), Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Vol. 42, Springer.
- Hajdo, E., Ibrahimbegovic, A. and Dolarevic, S. (2020), "Buckling analysis of complex structures with refined model built of frame and shell finite elements", Couple. Syst. Mech., 9, 29-46. http://doi.org/10.12989/csm.2020.9.1.029.
- Hajdo, E., Mejia-Nava, R.A., Imamovic, I. and Ibrahimbegovic, A. (2021), "Linearized instability analysis of frame structures under non-conservative loads: Static and dynamic approach", Couple. Syst. Mech., 10, 79-102. https://doi.org/10.12989/csm.2021.10.1.079.
- Ibrahimbegovic, A. (1995), "On FE implementation of geometrically nonlinear Reissner's beam theory: Three-dimensional curved beam elements", Comput. Meth. Appl. Mech. Eng., 122, 11-26. https://doi.org/10.1016/0045-7825(95)00724-F
- Ibrahimbegovic, A. (1997), "On the choice of finite rotation parameters", Comput. Meth. Appl. Mech. Eng., 149, 49-71. https://doi.org/10.1016/S0045-7825(97)00059-5.
- Ibrahimbegovic, A. (2009), Nonlinear Solid Mechanics: Theoretical Formulations and Finite Element Solution Methods, Springer, Berlin, Germany.
- Ibrahimbegovic, A. and Al Mikdad, M. (1998), "Finite rotations in dynamics of beams and implicit timestepping schemes", Int. J. Numer. Meth. Eng., 41, 781-814. https://doi.org/10.1002/(SICI)1097-0207(19980315)41:5<781::AID-NME308>3.0.CO;2-9.
- Ibrahimbegovic, A. and Mamouri, S. (1999), "Nonlinear dynamics of flexible beams in planar motion: Formulation and time-stepping scheme for stiff problems", J. Comput. Struct., 70, 1-21. https://doi.org/10.1016/S0045-7949(98)00150-3.
- Ibrahimbegovic, A. and Taylor, R.L. (2002), "On the role of frame-invariance of structural mechanics models at finite rotations", Comput. Meth. Appl. Mech. Eng., 191, 5159-5176. https://doi.org/10.1016/S0045-7825(02)00442-5.
- Ibrahimbegovic, A., Hajdo, E. and Dolarevic, S. (2013), "Linear instability or buckling problems for mechanical and coupled thermomechanical extreme conditions", Couple. Syst. Mech., 2, 349-374. http://doi.org/10.12989/csm.2013.2.4.349.
- Ibrahmbegovic, A. and Mejia-Nava, R.A. (2021), "Heterogeneities and material-scales providing physically based damping to replace Rayleigh damping for any structure size", Couple. Syst. Mech., 10, 201-216, http://doi.org/10.12989/csm.2021.10.3.201.
- Imamovic, I., Ibrahimbegovic, A. and Hajdo, E. (2019), "Geometrically exact initially curved Kirchhoff's planar elasto-plastic beam", Couple. Syst. Mech., 8, 537-553. https://doi.org/10.12989/csm.2019.8.6.537.
- Khasminskii, R. (2011), Stochastic Stability of Differential Equations, Vol. 66, Springer.
- Kree, P. and Soize, Ch. (2012), Mathematics of Random Phenomena: Random Vibrations of Mechanical Structures, Vol. 32, Springer Science & Business Media.
- Liptser, R. and Shiryayev, A.N. (2012), Theory of Martingales, Vol. 49, Springer.
- Lozano, R., Brogliato, B., Egeland, O. and Maschke, B. (2000), Dissipative Systems Analysis and Control: Theory and Applications, Springer.
- Masjedi, P.K. and Ovesy, H.R. (2015), "Large deflection analysis of geometrically exact spatial beams under conservative and nonconservative loads using intrinsic equation", Acta Mechanica, 226, 1689-1706. https://doi.org/10.1007/s00707-014-1281-3.
- Medic, S., Dolarevic, S. and Ibrahimbegovic, A. (2013), "Beam model refinement and reduction", Eng. Struct., 50, 158-169. https://doi.org/10.1016/j.engstruct.2012.10.004.
- Mejia-Nava, A.R., Ibrahimbegovic, A. and Lozano, R. (2020), "Instability phenomena and their control in statics and dynamics: Application to deep and shallow truss and frame structure", Couple. Syst. Mech., 9, 47-62. http://doi.org/10.12989/csm.2020.9.1.047.
- Mejia-Nava, A.R., Imamovic, I., Hajdo, E. and Ibrahimbegovic, A. (2022), "Nonlinear instability problem for geometrically exact beam under conservative and non-conservative loads", Eng. Struct. (in Press)
- Moreno-Navarro, P., Ibrahimbegovic, A. and Damjanovic, D. (2021), "Multi-scale model for coupled piezoelectric-inelastic behavior", Couple. Syst. Mech., 10(6), 521-544. https://doi.org/10.12989/csm.2021.10.6.521.
- Parlett, B.N. (1980), The Symmetric Eigenvalue Problem, Prentice-Hall.
- Timoshenko, S. and Gere, J.M. (1961), Theory of Elastic Stability, McGraw Hill.