DOI QR코드

DOI QR Code

Shaking table tests on the seismic response of slopes to near-fault ground motion

  • Zhu, Chongqiang (Department of Geotechnical Engineering, College of Civil Engineering, Tongji University) ;
  • Cheng, Hualin (Department of Geotechnical Engineering, College of Civil Engineering, Tongji University) ;
  • Bao, Yangjuan (Department of Geotechnical Engineering, College of Civil Engineering, Tongji University) ;
  • Chen, Zhiyi (Department of Geotechnical Engineering, College of Civil Engineering, Tongji University) ;
  • Huang, Yu (Department of Geotechnical Engineering, College of Civil Engineering, Tongji University)
  • Received : 2020.07.28
  • Accepted : 2022.02.21
  • Published : 2022.04.25

Abstract

The catastrophic earthquake-induced failure of slopes concentrically distributed at near-fault area, which indicated the special features of near-fault ground motions, i.e. horizontal pulse-like motion and large vertical component, should have great effect on these geo-disasters. We performed shaking table tests to investigate the effect of both horizontal pulse-like motion and vertical component on dynamic response of slope. Both unidirectional (i.e., horizontal or vertical motions) and bidirectional (i.e., horizontal and vertical components) motions are applied to soft rock slope model, and acceleration at different locations is reordered. The results show that the horizontal acceleration amplification factor (AAF) increases with height. Moreover, the horizontal AAF under unidirectional horizontal pulse-like excitations is larger than that subject to ordinary motion. The vertical AAF does not show an elevation amplification effect. The seismic response of slope under different bidirectional excitations is also different: (1) The horizontal AAF is roughly constant under horizontal pulse-like excitations with and without vertical waves, but (2) the horizontal AAF under ordinary bidirectional ground motions is larger than that under unidirectional ordinary motion. Above phenomena indicate that vertical component has limited effect on seismic response when the horizontal component is pulse-like ground motion, but it can greatly enhance seismic response of slope under ordinary horizontal motion. Moreover, the vertical AAF is enhanced by horizontal motion in both horizontal pulse-like and ordinary motion. Thence, we should pay enough attention to vertical ground motion, especially its horizontal component is ordinary ground motion.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41625011 and 51808401), the China Postdoctoral Science Foundation (Grant Nos. 2017M620167 and 2020T130472), and the Fundamental Research Funds for the Central Universities. The records used in this work are provided by the National Strong Motion Networks Center of China (http://www.smsd-iem.net.cn).

References

  1. Arias, A. (1970), A Measure of Earthquake Intensity. In Seismic Design for Nuclear Power Plants. Massachusetts Institute of Technology Press, Cambridge, UK.
  2. Bhattacharya, S., Hyodo, M., Nikitas, G., Ismael, B., Suzuki, H., Lombard, D., Egami, S., Watanabeb, G. and Goda, K. (2018), "Geotechnical and infrastructural damage due to the 2016 Kumamoto earthquake sequence", Soil Dyn. Earthq. Eng., 104, 390-394. https://doi.org/10.1016/j.soildyn.2017.11.009.
  3. Bouckovalas, G.D. and Papadimitriou, A.G. (2005), "Numerical evaluation of slope topography effects on seismic ground motion", Soil Dyn. Earthq. Eng., 25, 547-558. https://doi.org/10.1016/j.soildyn.2004.11.008
  4. Bray, J.D. and Rodriguez-Marek, A. (2004), "Characterization of forward-directivity ground motions in the near-fault region", Soil Dyn. Earthq. Eng., 24(11), 815-828. https://doi.org/10.1016%2Fj.soildyn.2004.05.001 https://doi.org/10.1016%2Fj.soildyn.2004.05.001
  5. Davoodi, M., Jafari, M.K. and Hadiani, N (2013), "Seismic response of embankment dams under near-fault and far-field ground motion excitation", Eng. Geol., 158, 66-76. https://doi.org/10.1016%2Fj.enggeo.2013.02.008. https://doi.org/10.1016%2Fj.enggeo.2013.02.008
  6. Del Gaudio, V., Pierri, P. and Calcagnile, G. (2012), "Analysis of seismic hazard in landslide-prone regions: criteria and example for an area of Daunia (southern Italy)", Nat. Hazards, 61(1), 203-215. https://doi.org/10.1007/s11069-011-9886-5.
  7. Falcone, G., Boldini, D. and Amorosi, A. (2018), "Site response analysis of an urban area: A multi-dimensional and non-linear approach", Soil Dyn. Earthq. Eng., 109, 33-45. https://doi.org/10.1016/J.SOILDYN.2018.02.026.
  8. Falcone, G., Boldini, D., Martelli, L. and Amorosi, A. (2020), "Quantifying local seismic amplification from regional charts and site specific numerical analyses: a case study". Bull. Earthq. Eng., 18, 77-107. https://doi.org/10.1007/s10518-019-00719-9.
  9. Gatmiri, B. and Arson, C. (2008), "Seismic site effects by an optimized 2D BE/FE method II. Quantification of site effects in two-dimensional sedimentary valleys". Soil Dyn. Earthq. Eng., 28, 646-661. https://doi.org/10.1016/J.SOILDYN.2007.09.002.
  10. Gazetas, G., Garini, E., Anastasopoulos, I. and Georgarakos, T. (2009), "Effects of near-fault ground shaking on sliding systems". J. Geotech. Geoenviron. Eng., 135(12), 1906-1921. https://doi.org/10.1061%2F%28asce%29gt.1943-5606.0000174. https://doi.org/10.1061%2F%28asce%29gt.1943-5606.0000174
  11. Gorum, T., Fan, X., van Westen, C.J., Huang, R.Q., Xu, Q., Tang, C. and Wang G (2011), "Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake", Geomorphology, 133(3-4), 152-167. https://doi.org/10.1016%2Fj.geomorph.2010.12.030. https://doi.org/10.1016%2Fj.geomorph.2010.12.030
  12. Harp, E.L. and Jibson, R.W. (1996), "Landslides triggered by the 1994 Northridge, California, earthquake", Bull. Seismol. Soc. Am., 86.1B, 319-332. https://doi.org/10.1785/BSSA08601BS319
  13. Huang, M.H., Fielding, E.J., Liang, C., Milillo, P., Bekaert, D., Dreger, D. and Salzer, J. (2017), "Coseismic deformation and triggered landslides of the 2016 Mw 6.2 Amatrice earthquake in Italy", Geophys. Res. Lett., 44(3), 1266-1274. https://doi.org/10.1002%2F2016gl071687. https://doi.org/10.1002%2F2016gl071687
  14. Huang, R.Q. and Li, W.L. (2009), "Analysis of the geo-hazards triggered by the 12 May 2008 Wenchuan Earthquake, China", Bull. Eng. Geol. Environ., 68(3), 363-371. https://doi.org/10.1007%2Fs10064-009-0207-0. https://doi.org/10.1007%2Fs10064-009-0207-0
  15. Iai, S. (1988), "Similitude for shaking table tests on soil-structure-fluid model in 1 g gravitational field", Rep. Port Harb. Res. Inst. Minist. Transp. Jpn., 27 (3), 1-24.
  16. Jin, Y., Kim, H., Kim, D, Lee, Y. and Kim, H. (2021), "Seismic response of flat ground and slope models through 1 g shaking table tests and numerical analysis". Appl. Sci., 11, 1-20. https://doi.org/10.3390/app11041875.
  17. Keefer, D.K. (1984), "Landslides caused by earthquakes", Geol. Soc. Am. Bull., 95, 406-421. https://doi.org/10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2.
  18. Li, L.Q., Ju, N.P., Zhang, S. and Deng, X.X. (2019), "Shaking table test to assess seismic response differences between steep bedding and toppling rock slopes", Bull. Eng. Geol. Environ., 78(1), 519-531. https://doi.org/10.1007%2Fs10064-017-1186-1 https://doi.org/10.1007%2Fs10064-017-1186-1
  19. Liu, J., Zhang, Y., Wei, J., Xian, C., Wan, Q., Xu, P. and Fu, H. (2021), "Hazard assessment of earthquake-induced landslides by using permanent displacement model considering near-fault pulse-like ground motions", Bull. Eng. Geol. Environ., 1-16. https://doi.org/10.1007/s10064-021-02464-3.
  20. Lim, J.X., Lee, M.L. and Tanaka, Y. (2018), "1 g shaking table tests on residual soils in Malaysia through different model setups", Geomech. Eng., 16(5), 547-558. https://doi.org/10.12989/gae.2018.16.5.547.
  21. Liu, H.X., Xu, Q. and Li, Y.R. (2014), "Effect of lithology and structure on seismic response of steep slope in a shaking table test". J. Mt. Sci., 11(2), 371-383. https://doi.org/10.1007%2Fs11629-013-2790-6. https://doi.org/10.1007%2Fs11629-013-2790-6
  22. Liu, J.M., Wang, T., Wu, S.R. and Gao, M.T. (2016), "New empirical relationships between Arias intensity and peak ground acceleration", Bull. Seismol. Soc. Am., 106(5), 2168-2176. https://doi.org/10.1785%2F0120150366. https://doi.org/10.1785%2F0120150366
  23. Loh, C.H., Wan, S. and Liao, W.I. (2002), "Effects of hysteretic model on seismic demands: consideration of near-fault ground motions", Struct. Des. Tall Build., 11(3), 155-169. https://doi.org/10.1002%2Ftal.182. https://doi.org/10.1002%2Ftal.182
  24. Lombardi, D., Bhattacharya, S., Scarpa, F. and Bianchi, M. (2015), "Dynamic response of a geotechnical rigid model container with absorbing boundaries", Soil Dyn. Earthq. Eng., 69, 46-56. https://doi.org/10.1016%2Fj.soildyn.2014.09.008. https://doi.org/10.1016%2Fj.soildyn.2014.09.008
  25. Mazza, F., Mazza, M. and Vulcano, A. (2017), "Nonlinear response of rc framed buildings retrofitted by different base-isolation systems under horizontal and vertical components of near-fault earthquakes", Earthq. Struct., 12(1), 135-144. https://doi.org/10.12989%2Feas.2017.12.1.135. https://doi.org/10.12989%2Feas.2017.12.1.135
  26. Molina-Gomez, F., Caicedo, B., Viana da Fonseca, A (2019), "Physical modelling of soil liquefaction in a novel micro shaking table", Geomech. Eng., 19(3), 229-240. https://doi.org/10.12989/gae.2019.19.3.229.
  27. Mori, F., Gena, A., Mendicelli, A., Naso, G. and Spina, D. (2020), "Seismic emergency system evaluation: The role of seismic hazard and local effects", Eng. Geol., 270, 105587. https://doi.org/10.1016/j.enggeo.2020.105587.
  28. Nowicki Jessee, M.A., Hamburger, M.W., Allstadt, K., Wald, D.J., Robeson, S.M., Tanyas, H., Hearne, M. and Thompson, E.M. (2018), "A global empirical model for near-real-time assessment of seismically induced landslides", J. Geophys. Res.: Earth Surf., 123(8), 1835-1859. https://doi.org/10.1029/2017JF004494.
  29. Panah, A.K., Yazdi. M. and Ghalandarzadeh, A. (2015), "Shaking table tests on soil retaining walls reinforced by polymeric strips". Geotext. Geomembranes, 43(2), 148-161. https://doi.org/10.1016%2Fj.geotexmem.2015.01.001. https://doi.org/10.1016%2Fj.geotexmem.2015.01.001
  30. Rizzitano, S., Cascone, E. and Biondi, G. (2014), "Coupling of topographic and stratigraphic effects on seismic response of slopes through 2D linear and equivalent linear analyses", Soil Dyn. Earthq. Eng., 67, 66-84. https://doi.org/10.1016/J.SOILDYN.2014.09.003.
  31. Rodriguez, C.E., Bommer, J.J. and Chandler, R.J. (1999), "Earthquake-induced landslides: 1980-1997", Soil Dyn. Earthq. Eng., 18(5), 325-346. https://doi.org/10.1016/S0267-7261(99)00012-3.
  32. Somerville, P.G., Smith, N.F., Graves, R.W. and Abrahamson, N.A. (1997), "Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity", Seismol. Res. Lett., 68(1), 199-222. https://doi.org/10.1785%2Fgssrl.68.1.199. https://doi.org/10.1785%2Fgssrl.68.1.199
  33. Song, J. and Rodriguez-Marek, A. (2015), "Sliding displacement of flexible earth slopes subject to near-fault ground motions". J. Geotech. Geoenviron. Eng., 141(3), 04014110. https://doi.org/10.1061%2F%28asce%29gt.1943-5606.0001233. https://doi.org/10.1061%2F%28asce%29gt.1943-5606.0001233
  34. Ministry of Housing and Urban Rural Development of the People's Republic of China and State Administration for Market Regulation (2019), Standard for geotechnical testing method (GB/T 50123-2019), Beijing, China.
  35. Sun, P., Yin, Y.P., Wu, S.R. and Chen, L.W. (2012), "Does vertical seismic force play an important role for the failure mechanism of rock avalanches? A case study of rock avalanches triggered by the Wenchuan earthquake of May 12, 2008, Sichuan, China". Environ. Earth Sci., 66(5), 1285-1293. https://doi.org/10.1007%2Fs12665-011-1338-8 https://doi.org/10.1007%2Fs12665-011-1338-8
  36. Sun, Z., Kong, L., Guo, A. and Tian, H. (2015), "Surface deformations and failure mechanisms of deposit slope under seismic excitation", Rock Soil Mech., 36(12), 3465-3481.
  37. Wang, K.L. and Lin, M.L. (2011), "Initiation and displacement of landslide induced by earthquake-a study of shaking table model slope test", Eng. Geol., 122(1-2), 106-114. https://doi.org/10.1016%2Fj.enggeo.2011.04.008. https://doi.org/10.1016%2Fj.enggeo.2011.04.008
  38. Wen, Z., Xie, J., Gao, M., Hu, Y. and Chau, K.T. (2010), "Near-source strong ground motion characteristics of the 2008 Wenchuan earthquake", Bull. Seismol. Soc. Am., 100(5), 2425-2439. https://doi.org/10.1785/0120090266
  39. Zarnani, S., El-Emam, M.M. and Bathurst, R.J. (2011), "Comparison of numerical and analytical solutions for reinforced soil wall shaking table tests", Geomech. Eng., 3(4):291-321. http://dx.doi.org/10.12989/gae.2011.3.4.291
  40. Zhang, Y., Zhang, J., Chen, G., Zheng, L. and Li, Y. (2015), "Effects of vertical seismic force on initiation of the Daguangbao landslide induced by the 2008 Wenchuan earthquake", Soil Dyn. Earthq. Eng., 73, 91-102. https://doi.org/10.1016%2Fj.soildyn.2014.06.036. https://doi.org/10.1016%2Fj.soildyn.2014.06.036
  41. Zhang, Y.B., Xiang, C.L., Che, Y.L., Cheng, Q.G., Xiao, L., Yu, P.C. and Chang, Z.W. (2019), "Permanent displacement models of earthquake-induced landslides considering near-fault pulse-like ground motions", J. Mountain Sci., 16(6), 1244-1257. https://doi.org/10.1007%2Fs11629-018-5067-2. https://doi.org/10.1007%2Fs11629-018-5067-2
  42. Zheng, L., Chen, G., Zen, K. and Kasama, K. (2012), "Numerical validation of Multiplex Acceleration Model for earthquake induced landslides", Geomech. Eng., 4(1), 39-53. https://doi.org/10.12989/gae.2012.4.1.039.