Acknowledgement
This work was supported by the National Natural Science Foundation of China (Grant Nos. 41625011 and 51808401), the China Postdoctoral Science Foundation (Grant Nos. 2017M620167 and 2020T130472), and the Fundamental Research Funds for the Central Universities. The records used in this work are provided by the National Strong Motion Networks Center of China (http://www.smsd-iem.net.cn).
References
- Arias, A. (1970), A Measure of Earthquake Intensity. In Seismic Design for Nuclear Power Plants. Massachusetts Institute of Technology Press, Cambridge, UK.
- Bhattacharya, S., Hyodo, M., Nikitas, G., Ismael, B., Suzuki, H., Lombard, D., Egami, S., Watanabeb, G. and Goda, K. (2018), "Geotechnical and infrastructural damage due to the 2016 Kumamoto earthquake sequence", Soil Dyn. Earthq. Eng., 104, 390-394. https://doi.org/10.1016/j.soildyn.2017.11.009.
- Bouckovalas, G.D. and Papadimitriou, A.G. (2005), "Numerical evaluation of slope topography effects on seismic ground motion", Soil Dyn. Earthq. Eng., 25, 547-558. https://doi.org/10.1016/j.soildyn.2004.11.008
- Bray, J.D. and Rodriguez-Marek, A. (2004), "Characterization of forward-directivity ground motions in the near-fault region", Soil Dyn. Earthq. Eng., 24(11), 815-828. https://doi.org/10.1016%2Fj.soildyn.2004.05.001 https://doi.org/10.1016%2Fj.soildyn.2004.05.001
- Davoodi, M., Jafari, M.K. and Hadiani, N (2013), "Seismic response of embankment dams under near-fault and far-field ground motion excitation", Eng. Geol., 158, 66-76. https://doi.org/10.1016%2Fj.enggeo.2013.02.008. https://doi.org/10.1016%2Fj.enggeo.2013.02.008
- Del Gaudio, V., Pierri, P. and Calcagnile, G. (2012), "Analysis of seismic hazard in landslide-prone regions: criteria and example for an area of Daunia (southern Italy)", Nat. Hazards, 61(1), 203-215. https://doi.org/10.1007/s11069-011-9886-5.
- Falcone, G., Boldini, D. and Amorosi, A. (2018), "Site response analysis of an urban area: A multi-dimensional and non-linear approach", Soil Dyn. Earthq. Eng., 109, 33-45. https://doi.org/10.1016/J.SOILDYN.2018.02.026.
- Falcone, G., Boldini, D., Martelli, L. and Amorosi, A. (2020), "Quantifying local seismic amplification from regional charts and site specific numerical analyses: a case study". Bull. Earthq. Eng., 18, 77-107. https://doi.org/10.1007/s10518-019-00719-9.
- Gatmiri, B. and Arson, C. (2008), "Seismic site effects by an optimized 2D BE/FE method II. Quantification of site effects in two-dimensional sedimentary valleys". Soil Dyn. Earthq. Eng., 28, 646-661. https://doi.org/10.1016/J.SOILDYN.2007.09.002.
- Gazetas, G., Garini, E., Anastasopoulos, I. and Georgarakos, T. (2009), "Effects of near-fault ground shaking on sliding systems". J. Geotech. Geoenviron. Eng., 135(12), 1906-1921. https://doi.org/10.1061%2F%28asce%29gt.1943-5606.0000174. https://doi.org/10.1061%2F%28asce%29gt.1943-5606.0000174
- Gorum, T., Fan, X., van Westen, C.J., Huang, R.Q., Xu, Q., Tang, C. and Wang G (2011), "Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake", Geomorphology, 133(3-4), 152-167. https://doi.org/10.1016%2Fj.geomorph.2010.12.030. https://doi.org/10.1016%2Fj.geomorph.2010.12.030
- Harp, E.L. and Jibson, R.W. (1996), "Landslides triggered by the 1994 Northridge, California, earthquake", Bull. Seismol. Soc. Am., 86.1B, 319-332. https://doi.org/10.1785/BSSA08601BS319
- Huang, M.H., Fielding, E.J., Liang, C., Milillo, P., Bekaert, D., Dreger, D. and Salzer, J. (2017), "Coseismic deformation and triggered landslides of the 2016 Mw 6.2 Amatrice earthquake in Italy", Geophys. Res. Lett., 44(3), 1266-1274. https://doi.org/10.1002%2F2016gl071687. https://doi.org/10.1002%2F2016gl071687
- Huang, R.Q. and Li, W.L. (2009), "Analysis of the geo-hazards triggered by the 12 May 2008 Wenchuan Earthquake, China", Bull. Eng. Geol. Environ., 68(3), 363-371. https://doi.org/10.1007%2Fs10064-009-0207-0. https://doi.org/10.1007%2Fs10064-009-0207-0
- Iai, S. (1988), "Similitude for shaking table tests on soil-structure-fluid model in 1 g gravitational field", Rep. Port Harb. Res. Inst. Minist. Transp. Jpn., 27 (3), 1-24.
- Jin, Y., Kim, H., Kim, D, Lee, Y. and Kim, H. (2021), "Seismic response of flat ground and slope models through 1 g shaking table tests and numerical analysis". Appl. Sci., 11, 1-20. https://doi.org/10.3390/app11041875.
- Keefer, D.K. (1984), "Landslides caused by earthquakes", Geol. Soc. Am. Bull., 95, 406-421. https://doi.org/10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2.
- Li, L.Q., Ju, N.P., Zhang, S. and Deng, X.X. (2019), "Shaking table test to assess seismic response differences between steep bedding and toppling rock slopes", Bull. Eng. Geol. Environ., 78(1), 519-531. https://doi.org/10.1007%2Fs10064-017-1186-1 https://doi.org/10.1007%2Fs10064-017-1186-1
- Liu, J., Zhang, Y., Wei, J., Xian, C., Wan, Q., Xu, P. and Fu, H. (2021), "Hazard assessment of earthquake-induced landslides by using permanent displacement model considering near-fault pulse-like ground motions", Bull. Eng. Geol. Environ., 1-16. https://doi.org/10.1007/s10064-021-02464-3.
- Lim, J.X., Lee, M.L. and Tanaka, Y. (2018), "1 g shaking table tests on residual soils in Malaysia through different model setups", Geomech. Eng., 16(5), 547-558. https://doi.org/10.12989/gae.2018.16.5.547.
- Liu, H.X., Xu, Q. and Li, Y.R. (2014), "Effect of lithology and structure on seismic response of steep slope in a shaking table test". J. Mt. Sci., 11(2), 371-383. https://doi.org/10.1007%2Fs11629-013-2790-6. https://doi.org/10.1007%2Fs11629-013-2790-6
- Liu, J.M., Wang, T., Wu, S.R. and Gao, M.T. (2016), "New empirical relationships between Arias intensity and peak ground acceleration", Bull. Seismol. Soc. Am., 106(5), 2168-2176. https://doi.org/10.1785%2F0120150366. https://doi.org/10.1785%2F0120150366
- Loh, C.H., Wan, S. and Liao, W.I. (2002), "Effects of hysteretic model on seismic demands: consideration of near-fault ground motions", Struct. Des. Tall Build., 11(3), 155-169. https://doi.org/10.1002%2Ftal.182. https://doi.org/10.1002%2Ftal.182
- Lombardi, D., Bhattacharya, S., Scarpa, F. and Bianchi, M. (2015), "Dynamic response of a geotechnical rigid model container with absorbing boundaries", Soil Dyn. Earthq. Eng., 69, 46-56. https://doi.org/10.1016%2Fj.soildyn.2014.09.008. https://doi.org/10.1016%2Fj.soildyn.2014.09.008
- Mazza, F., Mazza, M. and Vulcano, A. (2017), "Nonlinear response of rc framed buildings retrofitted by different base-isolation systems under horizontal and vertical components of near-fault earthquakes", Earthq. Struct., 12(1), 135-144. https://doi.org/10.12989%2Feas.2017.12.1.135. https://doi.org/10.12989%2Feas.2017.12.1.135
- Molina-Gomez, F., Caicedo, B., Viana da Fonseca, A (2019), "Physical modelling of soil liquefaction in a novel micro shaking table", Geomech. Eng., 19(3), 229-240. https://doi.org/10.12989/gae.2019.19.3.229.
- Mori, F., Gena, A., Mendicelli, A., Naso, G. and Spina, D. (2020), "Seismic emergency system evaluation: The role of seismic hazard and local effects", Eng. Geol., 270, 105587. https://doi.org/10.1016/j.enggeo.2020.105587.
- Nowicki Jessee, M.A., Hamburger, M.W., Allstadt, K., Wald, D.J., Robeson, S.M., Tanyas, H., Hearne, M. and Thompson, E.M. (2018), "A global empirical model for near-real-time assessment of seismically induced landslides", J. Geophys. Res.: Earth Surf., 123(8), 1835-1859. https://doi.org/10.1029/2017JF004494.
- Panah, A.K., Yazdi. M. and Ghalandarzadeh, A. (2015), "Shaking table tests on soil retaining walls reinforced by polymeric strips". Geotext. Geomembranes, 43(2), 148-161. https://doi.org/10.1016%2Fj.geotexmem.2015.01.001. https://doi.org/10.1016%2Fj.geotexmem.2015.01.001
- Rizzitano, S., Cascone, E. and Biondi, G. (2014), "Coupling of topographic and stratigraphic effects on seismic response of slopes through 2D linear and equivalent linear analyses", Soil Dyn. Earthq. Eng., 67, 66-84. https://doi.org/10.1016/J.SOILDYN.2014.09.003.
- Rodriguez, C.E., Bommer, J.J. and Chandler, R.J. (1999), "Earthquake-induced landslides: 1980-1997", Soil Dyn. Earthq. Eng., 18(5), 325-346. https://doi.org/10.1016/S0267-7261(99)00012-3.
- Somerville, P.G., Smith, N.F., Graves, R.W. and Abrahamson, N.A. (1997), "Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity", Seismol. Res. Lett., 68(1), 199-222. https://doi.org/10.1785%2Fgssrl.68.1.199. https://doi.org/10.1785%2Fgssrl.68.1.199
- Song, J. and Rodriguez-Marek, A. (2015), "Sliding displacement of flexible earth slopes subject to near-fault ground motions". J. Geotech. Geoenviron. Eng., 141(3), 04014110. https://doi.org/10.1061%2F%28asce%29gt.1943-5606.0001233. https://doi.org/10.1061%2F%28asce%29gt.1943-5606.0001233
- Ministry of Housing and Urban Rural Development of the People's Republic of China and State Administration for Market Regulation (2019), Standard for geotechnical testing method (GB/T 50123-2019), Beijing, China.
- Sun, P., Yin, Y.P., Wu, S.R. and Chen, L.W. (2012), "Does vertical seismic force play an important role for the failure mechanism of rock avalanches? A case study of rock avalanches triggered by the Wenchuan earthquake of May 12, 2008, Sichuan, China". Environ. Earth Sci., 66(5), 1285-1293. https://doi.org/10.1007%2Fs12665-011-1338-8 https://doi.org/10.1007%2Fs12665-011-1338-8
- Sun, Z., Kong, L., Guo, A. and Tian, H. (2015), "Surface deformations and failure mechanisms of deposit slope under seismic excitation", Rock Soil Mech., 36(12), 3465-3481.
- Wang, K.L. and Lin, M.L. (2011), "Initiation and displacement of landslide induced by earthquake-a study of shaking table model slope test", Eng. Geol., 122(1-2), 106-114. https://doi.org/10.1016%2Fj.enggeo.2011.04.008. https://doi.org/10.1016%2Fj.enggeo.2011.04.008
- Wen, Z., Xie, J., Gao, M., Hu, Y. and Chau, K.T. (2010), "Near-source strong ground motion characteristics of the 2008 Wenchuan earthquake", Bull. Seismol. Soc. Am., 100(5), 2425-2439. https://doi.org/10.1785/0120090266
- Zarnani, S., El-Emam, M.M. and Bathurst, R.J. (2011), "Comparison of numerical and analytical solutions for reinforced soil wall shaking table tests", Geomech. Eng., 3(4):291-321. http://dx.doi.org/10.12989/gae.2011.3.4.291
- Zhang, Y., Zhang, J., Chen, G., Zheng, L. and Li, Y. (2015), "Effects of vertical seismic force on initiation of the Daguangbao landslide induced by the 2008 Wenchuan earthquake", Soil Dyn. Earthq. Eng., 73, 91-102. https://doi.org/10.1016%2Fj.soildyn.2014.06.036. https://doi.org/10.1016%2Fj.soildyn.2014.06.036
- Zhang, Y.B., Xiang, C.L., Che, Y.L., Cheng, Q.G., Xiao, L., Yu, P.C. and Chang, Z.W. (2019), "Permanent displacement models of earthquake-induced landslides considering near-fault pulse-like ground motions", J. Mountain Sci., 16(6), 1244-1257. https://doi.org/10.1007%2Fs11629-018-5067-2. https://doi.org/10.1007%2Fs11629-018-5067-2
- Zheng, L., Chen, G., Zen, K. and Kasama, K. (2012), "Numerical validation of Multiplex Acceleration Model for earthquake induced landslides", Geomech. Eng., 4(1), 39-53. https://doi.org/10.12989/gae.2012.4.1.039.