DOI QR코드

DOI QR Code

Seismic loading response of piled systems on soft soils - Influence of the Rayleigh damping

  • Jimenez, Guillermo A. Lopez (Univ. Grenoble Alpes, CNRS, Grenoble INP**, 3SR) ;
  • Dias, Daniel (Hefei University of Technology, School of Automotive and Transportation Engineering) ;
  • Jenck, Orianne (Univ. Grenoble Alpes, CNRS, Grenoble INP**, 3SR)
  • Received : 2021.10.28
  • Accepted : 2022.03.04
  • Published : 2022.04.25

Abstract

An accurate analysis of structures supported on soft soils and subjected to seismic loading requires the consideration of the soil-foundation-structure interaction. An important aspect of this interaction lies with the energy dissipation due to soil material damping. Unlike advanced constitutive models that can induce energy loss, the use of simple elastoplastic constitutive models requires additional damping. The frequency dependent Rayleigh damping is a formulation that is frequently used in dynamic analysis. The main concern of this formulation is the correct selection of the target damping ratio and the frequency range where the response is frequency independent. The objective of this study is to investigate the effects of the Rayleigh damping parameters in soil-pile-structure and soil-inclusion-platform-structure systems in the presence of soft soil under seismic loading. Three-dimensional analyses of both systems are carried out using the finite difference software Flac3D. Different values of target damping ratios and minimum frequencies are utilized. Several earthquakes are used to study the influence of different excitation frequencies in the systems. The soil response in terms of accelerations, displacements and strains is obtained. For the rigid elements, the results are presented in terms of bending moments and normal forces. The results show that when the frequency of the input motion is close to the minimum (central) frequency in the Rayleigh damping formulation, the overdamping amount is reduced, and the surface spectral acceleration of the analyzed pile and inclusion systems increases. Thus, the bending moments and normal forces throughout the piles and inclusions also increase.

Keywords

References

  1. Alsaleh, H. and Shahrour, I. (2009), "Influence of plasticity on the seismic soil-micropiles-structure interaction", Soil Dyn. Earthq. Eng., 29(3), 574-578. https://doi.org/10.1016/j.soildyn.2008.04.008.
  2. Ambrosini, R.D. (2006), "Material damping vs radiation damping in soil-structure interaction analysis", Comput. Geotech., 33(2), 86-92. https://doi.org/10.1016/j.compgeo.2006.03.001.
  3. Amorosi, A., Boldini, D. and Elia, G. (2010), "Parametric study on seismic ground response by finite element modelling", Comput. Geotech., 37(4), 515-528. https://doi.org/10.1016/j.compgeo.2010.02.005.
  4. Banerjee, S., Goh, S.H. and Lee, F.H. (2014), "Earthquake-induced bending moment in fixed-head piles in soft clay". Geotechnique, 64(6), 431-446. https://doi.org/10.1680/geot.12.P.195.
  5. Briancon, L., Dias, D. and Simon, C. (2015), "Monitoring and numerical investigation of a rigid inclusions-reinforced industrial building", Can. Geotech. J., 52(10), 1592-1604. https://doi.org/10.1139/cgj-2014-0262.
  6. Carbonari, S., Dezi, F. and Leoni, G. (2011), "Linear soil-structure interaction of coupled wall-frame structures on pile foundations", Soil Dyn. Earthq. Eng., 31(9), 1296-1309. https://doi.org/10.1016/j.soildyn.2011.05.008.
  7. Center for Engineering Strong Motion Data. CESMD. US Geological survey and the California Geological Survey.
  8. Chatterjee, K., Choudhury, D, Dilli, V. and Mukherjee S.P. (2015), "Dynamic analyses and field observation on piles in Kolkata city", Geomech. Eng., 8(3), 415-440. https://doi.org/10.12989/gae.2015.8.3.415
  9. Chu, D. and Truman, K.Z. (2004), "Effects of pile foundation configurations in seismic soil-pile-structure interaction", Proceedings of the 13th World Conference on Earthquake Engineering Vancouver, B.C., Canada.
  10. Eurocode 8 (1998), Design of structures for earthquake resistance - Part 5: Foundations, retaining structures and geotechnical aspects.
  11. Fan, Z., Wang, Y., Xiao, H. and Zhang, C. (2007), "Analytical method of load-transfer of single pile under expansive soil swelling", J. Central South Univ., 14(4), 575-579. https://doi.org/10.1007/s11771-007-0110-4.
  12. Fathahi, B., Reza Tabatabaiefar, S.H. and Samali, B. (2014), "Soil-structure interaction vs site effect for seismic design of tall buildings on soft soil", Geomech. Eng., 6(3), 239-320. https://doi.org/10.12989/gae.2014.6.3.293.
  13. Ghorbanzadeh, M., Uygar, E. and Sensoy, S. (2020). "Lateral soil pile structure interaction assessment for semi-active tuned mass damper buildings", Structures, 29(3), 1362-1379. https://doi.org/10.1016/j.istruc.2020.12.020.
  14. Goh, S.H. and Zhang, L. (2017), "Estimation of peak acceleration and bending moment for pile-raft systems embedded in soft clay subjected to far-field seismic excitation", J. Geotech. Geoenviron. Eng., 143(11), 04017082.1-17. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001779.
  15. Grange S. (2008), "Modelisation simplifiee 3D de l'interaction sol-structure: application au genie parasismique", PhD dissertation, Institut Polytechnique de Grenoble, Grenoble, France.
  16. Haldar, S. and Babu, S.G.L. (2010), "Failure Mechanisms of pile foundations in liquefiable soil: Parametric study", Int. J. Geomech., 10(2), 74-84. https://doi.org/10.1061/(ASCE)1532-3641(2010)10:2(74)
  17. Han, Y. (2001), "Dynamic soil-pile-structure interaction". Proceedings of the International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 11, 1-6.
  18. Hashash, Y.M.A. and Park, D. (2002), "Viscous damping formulation and high frequency motion propagation in nonlinear site response analysis", Soil Dyn. Earthq. Eng., 22(7), 611-624. https://doi.org/10.1016/S0267-7261(02)00042-8.
  19. Hatem, A. (2009), " Comportement en zone sismique des inclusions rigides analyse de l'interaction sol-inclusion-matelas de repartition-structure", PhD dissertation, Universite des Sciences et Technologies de Lille I, Lille, France.
  20. Hayashi, Y. and Takahashi, I. (2004), "Soil-structure interaction effects on building response in recent earthquakes". Proceedings of the 3rd UJNR Workshop on Soil-Structure Interaction, Menlo Park, California, USA.
  21. Hazzar, L., Hussien, M.N. and Karray, M. (2017), "Influence of vertical loads on lateral response of pile foundations in sands and clays", J. Rock Mech. Geotech. Eng., 9(2), 291-304. https://doi.org/10.1016/j.jrmge.2016.09.002.
  22. Hokmabadi, A.S., Fatahi, B. and Samali, B., (2014), "Assessment of soil-pile-structure interaction influencing seismic response of mid-rise buildings sitting on floating pile foundations", Comput. Geotech., 55, 172-186. https://doi.org/10.1016/j.compgeo.2013.08.011.
  23. Houda, M. (2016), "Comportement sous chargement cyclique des massifs de sol renforces par inclusions rigides : experimentation en laboratoire et modelisation numerique", PhD dissertation, Universite de Grenoble, France.
  24. Hudson, M., Idriss, I.M. and Beikae, M. (1994), "QUAD4M - A computer program to evaluate the seismic response of soil structures using finite element procedures and incorporating a compliant base", Center for Geotechnical Modeling, Dept. of Civil and Environmental Engineering, UC, Davis.
  25. Idriss, I.M., Lysmer J. Hwang R. and Seed H.B. (1975), "QUAD-4 - A computer program for evaluating the seismic response of soil structures by variable damping finite element procedures", EERC Report 73-16.
  26. Itasca, Flac 3D. (2012), Fast Lagrangian Analysis of Continua in 3-dimentions, version 5.0, manual.
  27. Khanmohammadi, M. and Fakharian, K. (2018), "Evaluation of performance of piled-raft foundations on soft clay: a case of study", Geomech. Eng.. 14(1), 43-50. https://doi.org/10.12989/gae.2018.14.1.043.
  28. Kim, G. Kyung, D., Park, D. and Lee, J. (2015), "CTP-based p-y analysis for mono-piles in sands under static and cyclic loading conditions", Geomech. Eng., 9(3), 313-328. https://doi.org/10.12989/gae.2015.9.3.313.
  29. Kitiyodom, P., Masumoto, T. and Kawaguchi, K., (2006), "Analyses of piled foundations subjected to ground movements induced by tunneling", Proceedings of the Geotechnical Aspects of Underground Construction in Soft Ground 5th International Symposium. Amsterdam, Netherlands.
  30. Kuhlemeyer, R.L. and Lysmer, J. (1973), "Finite element method accuracy for wave propagation problems", J. Soil Mech. Found. Div. - ASCE, 99(5), 421-427. https://doi.org/10.1061/JSFEAQ.0001885.
  31. Kumar, A., Choudhury, D. and Katzenbach, R. (2016), "Effect of earthquake on combined pile-raft foundation", Int. J. Geomech., 16(5), 04016013. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000637.
  32. Kwok, A.O.L. Stewart, J.P. Hashash, Y.M.A., Matasovic, N., Pyke, R., Wang, Z. and Yang, Z. (2007), "Use of exact solutions of wave propagation problems to guide implementation of nonlinear seismic ground response analysis procedures", J. Geotech. Geoenviron. Eng., 133(11), 1385-1398. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:11(1385).
  33. Liyanapathirana, D.S. and Poulos, H.G., (2005), "Seismic lateral response of piles in liquefying soil", J. Geotech. Geoenviron. Eng., 131(12), 1466-1479. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:12(1466).
  34. Lopez Jimenez, G.A., Dias, D. and Jenck, O. (2018), "Effect of the soil-pile-structure interaction in seismic analysis: case of liquefiable soils", Acta Geotechnica, https://doi.org/10.1007/s11440-018-0746-2.
  35. Lu, X., Li, P., Chen, B. and Chen, Y. (2005), "Computer simulation of the dynamic layered soil-pile-structure interaction system", Can. Geotech. J., 42(3), 742-751. https://doi.org/10.1139/t05-016.
  36. Luo, C., Yang, X. Zhan, C. Jin, X. And Ding, Z. (2016), "Nonlinear 3D finite element analysis of soil-pile-structure interaction system subjected to horizontal earthquake excitation", Soil Dyn. Earthq. Eng., 84, 145-156. https://doi.org/10.1016/j.soildyn.2016.02.005.
  37. Lysmer, J. and Kuhlemeyer, R.L. (1969), "Finite dynamic model for infinite media", J. Eng. Mech. Div. - ASCE, 95, 859-878. https://doi.org/10.1061/JMCEA3.0001144
  38. Maheshwari, B.K., Truman, K.Z., El Naggar, M.H. and Gould, P.L. (2004), "Three-dimensional nonlinear analysis for seismic soil-pile-structure interaction", Soil Dyna. Earthq. Eng., 24, 343-356. https://doi.org/10.1016/j.soildyn.2004.01.001.
  39. Maheshwari, B.K. and Watanabe, H., (2006), "Nonlinear dynamic analysis of pile foundation: effect of separation at soil-pile interface", Soils Found, 46(4), 437-448. https://doi.org/10.3208/sandf.46.437
  40. Manica-Malcom, M.A., Ovando-Shelley, E. and Botero Jaramillo, E. (2016), "Numerical study of the seismic behavior of rigid inclusions in soft Mexico City clay", J. Earthq. Eng., 20(3), 447-475. https://doi.org/10.1080/13632469.2015.1085462.
  41. Manica, M., Ovando, E. and Botero, E. (2014), "Assessment of damping models in FLAC", Comput. Geotech., 59, 12-20. https://doi.org/10.1016/j.compgeo.2014.02.007.
  42. Messioud, S., Okyay, U.S., Sbartai B. and Dias, D. (2016), "Dynamic response of pile reinforced soils and piled foundations", Geotech. Geol. Eng., 34(3), 789-805. https://doi.org/10.1007/s10706-016-0003-0.
  43. Messioud, S., Sbartai, B. and Dias, D. (2016), "Estimation of dynamic impedance of the soil-pile-slab and soil-pile-mattress-slab systems", Int. J. Struct. Stab. Dyn., 17(6), 17. https://doi.org/10.1142/S0219455417500572.
  44. Nghiem, H. and Nien-Yin, C. (2008), "Soil-structure interaction effects of high rise buildings", Proceedings of the 6th International Conference on Case Histories in Geotechnical Engineering.
  45. Nguyen, Q.V., Fatahi, B. and Hokmabadi, A.S. (2017), "Influence of size and load-bearing mechanism of piles on seismic performance of buildings considering soil-pile-structure interaction", Int. J. Geomech., 17(7), 04017007. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000869.
  46. Okyay, U.S. (2010), "Etude experimentale et numerique des transferts de charge dans un massif renforce par inclusions rigides. Application a des cas de chargements statiques et dynamiques", PhD dissertation, L'Institut National des Sciences Appliquees de Lyon. Lyon, France.
  47. Okyay, U.S., Dias, D., Billion, P. and Vandeputte, D. (2012), "Impedance functions of slab foundations with rigid piles", Geotech. Geol. Eng., 30(4), 1013-24. https://doi.org/10.1007/s10706-012-9523-4
  48. Phillips, C., Hashash, Y.M.A., Oslon, S.M. and Muszyinski, M.R. (2012), "Significance of small strain damping and dilation parameters in numerical modeling of free-field lateral spreading centrifuge tests", Soil Dyn. Earthq. Eng., 42, 161-176. https://doi.org/10.1016/j.soildyn.2012.06.001.
  49. Phillips, C. and Hashash, Y.M.A. (2009), "Damping formulation for nonlinear 1D site response analyses", Soil Dyn. Earthq. Eng., 29(7), 1143-1158. https://doi.org/10.1016/j.soildyn.2009.01.004.
  50. Priestley M.J.N. and Grant D.N. (2005). "Viscous damping in seismic design and analysis", J. Earthq. Eng., 9(2), 229-255. https://doi.org/10.1142/S1363246905002365
  51. Rahmani, A. and Pak, A. (2012), "Dynamic behavior of pile foundations under cyclic loading in liquefiable soils", Comput. Geotech., 40, 114-126. https://doi.org/10.1016/j.compgeo.2011.09.002.
  52. Rajeswari, J.S. and Sarkar, R. (2020), "Estimation of transient forces in single pile embedded in liquefiable soil", Int. J. Geomech., 20(9), 06020023. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001788.
  53. Rangel-Nunez, J.L., Gomez-Bernal, A., Aguirre-Gonzalez, J., Sordo-Zabay, E. And Ibarra-Razo, E. (2008), "Dynamic response of soft soil deposits improved with rigid inclusions", Proceedings of the 14th World Conference on Earthquake Engineering (14WCEE).
  54. Rathje, E.M. and Bray, J.D. (2001), "One- and two-dimensional seismic analysis of solid-waste landfills", Can. Geotech. J., 38(4), 850-862. https://doi.org/10.1139/t01-009.
  55. Rayhani, M.H. and El Naggar, M.H. (2008), "Numerical modeling of seismic response of rigid foundation on soft soil", Int. J. Geomech., 8(6), 336-346. https://doi.org/10.1061/(ASCE)1532-3641(2008)8:6(336).
  56. Sadek, M. (2003), "Etude numerique du comportement des microspieux sous chargement sismique : analyse de l'effet de groupe er de l'inclinaison", Ph.D. dissertation, Universite des Sciences et Technologies de Lille I, Lille, France.
  57. Sadek, M. and Shahrour, I. (2004), "A three dimensional embedded beam element for reinforced geomaterials", Int. J. Numer. Anal. Method. Geomech., 28(9), 931-946. https://doi.org/10.1002/nag.357.
  58. Seed, H.B., Romo, M.P., Sun, J.I., Jaime, A. and Lysmer, J. (1988), "The Mexico earthquake of September 19, 1985 - Relationships between soil conditions and earthquake ground motions", Earthq. Spectra, 4(4), 687-729. https://doi.org/10.1193/1.1585498.
  59. Shahrour, I., Alsaleh, H. and Souli, M. (2012), "3D elastoplastic analysis of the seismic performance of inclined micropiles", Comput. Geotech., 39, 1-7. https://doi.org/10.1016/j.compgeo.2011.08.006.
  60. Shahrour, I., Sadek, M. and Ousta, R. (2001), "Seismic behavior of micropiles used as foundation support elements three-dimensional finite element analysis", T. Res. Record, 1772(1), 84-90. https://doi.org/10.3141/1772-10.
  61. Spears R.E. and Jensen, S.R. (2012), "Approach for selection of Rayleigh damping parameters used for time history analysis", J. Pressure Vess. Technol., 134, 1-7. https://doi.org/10.1115/1.4006855.
  62. Stewart, J.P., Fenves, G.L. and Seed, R.B. (1999). "Seismic soil-structure interaction in buildings. I: analytical methods", J. Geotech. Geoenviron. Eng., 125(1), 26-37. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:1(26).
  63. Sun, Q., Bo, J. and Dias, D. (2019), "Viscous damping effects on the seismic elastic response of tunnels in three sites", Geomech. Eng., 18(6), 639-650. https://doi.org/10.12989/gae.2019.18.6.639.
  64. Suwal, S., Pagliaroli, A. and Lanzo, G. (2014), "Comparative study of 1D codes for site response analyses", Int. J. Landslide Environ., 2(1), 24-31.
  65. Tabatabaiefar, H.R. and Fatahi, B. (2014), "Idealisation of soil-structure system to determine inelastic seismic response of midrise building frames", Soil Dyn. Earthq. Eng., 66, 339-351. https://doi.org/10.1016/j.soildyn.2014.08.007.
  66. Tokimatsu, K., Suzuki, H. and Sato, M. (2005), "Effects of inertial and kinematic interaction on seismic behavior of pile with embedded foundation", Soil Dynam. Earthq. Eng., 25(7-10), 753-762. https://doi.org/10.1016/j.soildyn.2004.11.018.
  67. Tsai, C.C., Park, D. and Chen, C.W. (2014), "Selection of the optimal frequencies of viscous damping formulation in nonlinear time-domain site response analysis", Soil Dynam. Earthq. Eng., 67, 353-358. https://doi.org/10.1016/j.soildyn.2014.10.026.
  68. Wang, J.T. (2011), "Investigation of damping in arch dam-water-foundation rock system of Mauvoisin arch dam", Soil Dynam. Earthq. Eng., 31(1), 33-44. https://doi.org/10.1016/j.soildyn.2010.08.002.
  69. Wolf, J.P. (1985), Dynamic Soil-Structure Interaction I. Prentice-Hall, ed., New Jersey: Englewood Cliffs.
  70. Wotherspoon, L.M. (2006), "Three dimensional pile finite element modelling using OpenSees", Proceedings of the NZSEE Conference, (Napier).
  71. Wu, G. and Finn, W.D.L. (1997), "Dynamic nonlinear analysis of pile foundations using finite element method in the time domain", Can. Geotech. J., 3, 44-52. https://doi.org/10.1139/t96-088.
  72. Wu, J.J., Li, Y., Cheng, Q.G., Wen, H. and Liang, X. (2016), "A simplified method for the determination of vertically loaded pile-soil interface parameters in layered soil based on FLAC3D", Front. Struct. Civil Eng., 10(1), 103-111. https://doi.org/10.1007/s11709-015-0328-4.
  73. Xie, Q., Dinis da Gama, C., Yu, X. And Chen, Y. (2013), "A parametric study of interface characteristics in a buttress retaining wall", Elec. J. Geotech. Eng., 18, 1477-1492.
  74. Zacek, M. (1996). Construire parasismique. Editions Parentheses.