DOI QR코드

DOI QR Code

Modeling of a rockburst related to anomalously low friction effects in great depth

  • Zhan, J.W. (College of Civil Engineering, Fujian University of Technology) ;
  • Jin, G.X. (College of Ecological Environment and Urban Construction, Fujian University of Technology) ;
  • Xu, C.S. (School of Civil, Environment and Mining Engineering, the University of Adelaide) ;
  • Yang, H.Q. (School of Civil Engineering, Chongqing University) ;
  • Liu, J.F. (School of Civil Engineering, Chongqing University) ;
  • Zhang, X.D. (College of Civil Engineering, Fuzhou University)
  • Received : 2018.10.25
  • Accepted : 2022.02.21
  • Published : 2022.04.25

Abstract

A rockburst is a common disaster in deep-tunnel excavation engineering, especially for high-geostress areas. An anomalously low friction effect is one of the most important inducements of rockbursts. To elucidate the correlation between an anomalously low friction effect and a rockburst, we establish a two-dimensional prediction model that considers the discontinuous structure of a rock mass. The degree of freedom of the rotation angle is introduced, thus the motion equations of the blocks under the influence of a transient disturbing force are acquired according to the interactions of the blocks. Based on the two-dimensional discontinuous block model of deep rock mass, a rockburst prediction model is established, and the initiation process of ultra-low friction rockburst is analyzed. In addition, the intensity of a rockburst, including the location, depth, area, and velocity of ejection fragments, can be determined quantitatively using the proposed prediction model. Then, through a specific example, the effects of geomechanical parameters such as the different principal stress ratios, the material properties, a dip of principal stress on the occurrence form and range of rockburst are analyzed. The results indicate that under dynamic disturbance, stress variation on the structural surface in a deep rock mass may directly give rise to a rockburst. The formation of rockburst is characterized by three stages: the appearance of cracks that result from the tension or compression failure of the deformation block, the transformation of strain energy of rock blocks to kinetic energy, and the ejection of some of the free blocks from the surrounding rock mass. Finally, the two-dimensional rockburst prediction model is applied to the construction drainage tunnel project of Jinping II hydropower station. Through the comparison with the field measured rockburst data and UDEC simulation results, it shows that the model in this paper is in good agreement with the actual working conditions, which verifies the accuracy of the model in this paper.

Keywords

Acknowledgement

The research described in this paper was financially supported by the National Natural Science Foundation of China (NO. 41202195, 41672290, 52008111) and Natural Science Foundation of Fujian province NO. 2016J01189.

References

  1. Aleksandrova, N.I. and Sher, E.N. (2004), "Modeling of Wave Propagation in Block Media", J. Min. Sci., 40(6), 579-587. https://doi.org/10.1007/s10913-005-0045-9
  2. Chen, B.R., Feng, X.T., Li, Q.P., Luo, R.Z. and Li, S. (2015), "Rock burst intensity classification based on the radiated energy with damage intensity at Jinping II hydropower station, China", Rock Mech. Rock Eng., 48(1), 289-303. https://doi:10.1007/s00603-013-0524-2.
  3. Di, Y. and Wang, E. (2021), "Rock burst precursor electromagnetic radiation signal recognition method and early warning application based on recurrent neural networks", Rock Mech. Rock Eng., 54(3), 1449-1461. https://doi:10.1007/S00603-020-02314-W.
  4. Dorigo, M. and Birattari, M. (2010), "Ant colony optimization. Encyclopedia of Machine Learning", Springer US: 36-39.
  5. He, B.G., Zelig, R., Hatzor, Y.H. and Feng, X.T. (2016), "Rockburst generation in discontinuous rock masses", Rock Mech. Rock Eng., 10(49), 4103-4124. https://doi:doi:10.1007/s00603-015-0906-8.
  6. He, M., Ren, F. and Liu, D. (2018), "Rockburst mechanism research and its control", Int. J. Min. Sci. Technol., 28(5), 829-837. https://doi.org/10.1016/j.ijmst.2018.09.002.
  7. Hoek, E. and Brown, E.T. (1980), "Underground Excavation in Rock", Institute of Mining and Metallurgy, London.
  8. Huang, M., Xu, C.S., Zhan, J.W. and Wang, J.B. (2017), "Comparative study on dynamic properties of argillaceous siltstone and its grouting-reinforced body", Geomech. Eng., 13(2), 333-352. https://doi:10.12989/gae.2017.13.2.333.
  9. Ji, B., Xie, F., Wang, X., He, S. and Song, D. (2020), "Investigate contribution of multi-microseismic data to rockburst risk prediction using support vector machine with genetic algorithm", IEEE Access, 8, 58817-58828. https://doi:10.1109/ACCESS.2020.2982366.
  10. Kaiser, P.K., Tannant, D.D. and McCreath, D.R. (1996), "Canadian rockburst support handbook", ON: Geomechanics Research Centre, Laurentian University, Sudbury.
  11. Kazarinov, N.A., Petrov, Y.V. and Cherkasov, A.V. (2021), "Instability effects of the dynamic crack propagation process", Eng. Fract. Mech., 242, 107438. https://doi:10.1016/J.ENGFRACMECH.2020.107438.
  12. Keneti, A. and Sainsbury, B.A. (2018), "Review of published rockburst events and their contributing factors", Eng. Geol., 246, 361-373. https://doi.org/10.1016/j.enggeo.2018.10.005.
  13. Kidybinski, A. (1981), "Bursting liability indices of coal", Int. J. Rock Mech. Sci., 18(4), 295-304. https://doi.org/10.1016/0148-9062(81)91194-3.
  14. Kurlenya, M.V., Oparin, V.N. and Vostrikov, V.I. (1998), "Geomechanical conditions for quasi-resonances in geomaterials and block material", J. Min. Sci., 34(5), 379-386. https://doi.org/10.1007/BF02550693
  15. Lei, X., Kusunose, K. and Rao, M. (2000), "Quasi-static fault growth and cracking inhomogeneous brittle rock under triaxial compression using acoustic emission monitoring", J. Geophys. Res., 105(3), 6127-6139. https://doi.org/10.1029/1999JB900385.
  16. Li, C.C., Mikula, P., Simser, B., Hebblewhite, B., Joughin, W., Feng, X. and Xu, N. (2019), "Discussions on rockburst and dynamic ground support in deep mines", J. Rock Mech. Geotech. Eng., 11(5), 1110-1118. https://doi.org/10.1016/j.jrmge.2019.06.001.
  17. Liu, L.P., Wang, X.G. and Jia, Z.X. (2011), "Analysis of mechanism and characteristic of rockburst in drainage-hole of Jinping II hydropower station", J. Central South Univ. (Science and Technology), 42(10), 3150-3155. https://https://doi.org/10.CNKI:SUN:ZNGD.0.2011-10-044. https://doi.org/10.CNKI:SUN:ZNGD.0.2011-10-044
  18. Ma, T.H., Tang, C.A., Tang, S.B., Kuang, L., Yu, Q., Kong, D.Q. and Zhu, X. (2018), "Rockburst mechanism and prediction based on microseismic monitoring", Int. J. Rock Mech. Min. Sci., 110, 177-188. https://doi.org/10.1016/j.ijrmms.2018.07.016.
  19. Manouchehrian, A. and Cai, M. (2017), "Analysis of rockburst in tunnels subjected to static and dynamic loads", J. Rock Mech. Geotech. Eng., 9(6), 1031-1040. https://doi:10.1016/j.jrmge.2017.07.001.
  20. Mazaira, A. and Konicek, P. (2015), "Intense rockburst impacts in deep underground construction and their prevention", Can. Geotech. J., 52(10), 1426-1439. https://doi:10.1139/cgj-2014-0359.
  21. Pu, Y., Apel, D.B., and Xu, H. (2019), "Rockburst prediction in kimberlite with unsupervised learning method and support vector classifier", Tunn. Undergr. Sp. Tech., 90, 12-18. https://doi.org/10.1016/j.tust.2019.04.019.
  22. Pu, Y., Apel, D.B., Liu, V., and Mitri, H. (2019), "Machine learning methods for rockburst prediction-state-of-the-art review", Int. J. Min. Sci Technol., 29(4), 565-570. https://doi.org/10.1016/j.ijmst.2019.06.009.
  23. Russense, B.F. (1974), "Analysis of rock spalling for tunnels in steep valley sides", Yuksek Lisans Tezi.
  24. Sadovsky, M.A. (1979), "Natural lumpiness of rocks", Dokl Akad Nauk SSSR, 247(4): 21-29.
  25. Sadovsky, M.A. (1979), "Natural lumpiness of rocks", Dokl Akad Nauk SSSR, 247(4): 21-29.
  26. Saraikin, V.A., Stepanenko, M.V. and Tsareva, O.V. (1988), "Elastic waves in a medium with block structure", J. Min. Sci., 24(1), 11-17.
  27. Sepehri, M., Apel, D.B., Adeeb, S., Leveille, P. and Hall, R.A. (2020), "Evaluation of mining-induced energy and rockburst prediction at a diamond mine in Canada using a full 3D elastoplastic finite element model", Eng. Geol., 266, 105457. https://doi:10.1016/j.enggeo.2019.105457.
  28. Shen, B., Stephansson, O., Rinne, M., Amemiya, K., Yamashi, R., Toguri, S. and Asano, H. (2011), "FRACOD modeling of rock fracturing and permeability change in excavation-damaged zones", Int. J. Geomech., 11(4): 302-313. https://doi:10.1061/(ASCE)GM.1943-5622.0000034..
  29. Shi, J.W. and Chen, Z.L. (2014), "Based on Numerical Simulation Study of Rockburst in Roadway Induced by Fault", Advanced Materials Research. Trans Tech Publications, 962:370-374. https://doi: 10.4028/www.scientific.net/AMR.962-965.370.
  30. Shi, X., Wang, M., Wang, Z., Wang, Y., Lu, S. and Tian, W. (2021), "A brittleness index evaluation method for weak-brittle rock by acoustic emission technique", J. Natural Gas Sci. Eng., 95, 104160. https://doi.org/10.1016/j.jngse.2021.104160.
  31. Slepyan, L.I. (2012), "Models and Phenomena in Fracture Mechanics", Springer-Verlag, Berlin-Heidelberg.
  32. Stacey, T.R. (2016), "Addressing the consequences of dynamic rock failure in underground excavations", Rock Mech Rock Eng., 10(49), 4091-4101. https://doi:10.1007/s00603-016-0922-3.
  33. Tan, Y., Sun, G.Z. and Guo, Z.H. (1991), "A composite index Krb criterion for the ejection characteristics of the burst rock", Sci. Geol. Sin., 2, 193-200. https://doi:CNKI:SUN:DZKX.0.1991-02-009.
  34. Turchaninov, I.A. (1981), "Condition of extra hard rock into weak under the influence of tectonic stress of massifs", Int. Symposium Weak Rock, Tokyo :555-559.
  35. Ulusay R. (2016), "Rock mechanics and rock engineering: From the past to the future", CRC Press. https://doi.org/10.1201/9781315388502.
  36. Wang, C., Cao, C., Liu, Y., Li, C., Li, G. and Lu, H. (2021), "Experimental investigation on synergetic prediction of rockburst using the dominant-frequency entropy of acoustic emission", Nat. Hazards, 1-18. https://doi:10.1007/S11069-021-04822-6.
  37. Wang, C., Wu, A., Lu, H., Bao, T. and Liu, X. (2015), "Predicting rockburst tendency based on fuzzy matter-element model", Int. J. Rock Mech. Min. Sci., 75, 224-232. https://doi.org/10.1016/j.ijrmms.2015.02.004.
  38. Wang, C.L., Chuai, X. S., Shi, F., Gao, A. and Bao T. (2018), "Experimental investigation of predicting rockburst using Bayesian model", Geomech. Eng., 15(6), 1153-1160. https://doi:10.12989/gae.2018.15.6.1153.
  39. Wang, X., Li, S., Xu, Z., Xue, Y., Hu, J., Li, Z. and Zhang, B. (2019), "An interval fuzzy comprehensive assessment method for rock burst in underground caverns and its engineering application", Bull. Eng. Geol. Environ., 78(7), 5161-5176. https://doi:10.1007/s10064-018-01453-3.
  40. Wu, H., Fang, Q. and Wang, H.L. (2008), "Mechanism of anomalously low friction phenomenon in deep block rock mass", Chin J. Geotech. Eng., 30, 769-775. https://doi.org/10.3321/j.issn:1000-4548.2008.05.025
  41. Xue, Y., Bai, C., Kong, F., Qiu, D., Li, L., Su, M. and Zhao, Y. (2020). "A two-step comprehensive evaluation model for rockburst prediction based on multiple empirical criteria", Eng. Geol., 268, 105515. https://doi.org/10.1016/j.enggeo.2020.105515.
  42. Yang, Y., Zhang, D., Li, S., Yang, L. and Jin, L. (2019). "In-situ stress test and rockburst analysis in Micang Mountain tunnel. Energy Sources", Part A: Recovery, Utilization, and Environ. Effects, 1-10. https://doi.org/10.1080/15567036.2019.1649748.
  43. Yu D., Peng, J., Cui, C. and Sun, Z. (2010), "Complete stress-strain process and mechanical of lamellar rock under compression condition", J. Basic Sci. Eng., 18(5), 792-800. https://doi:CNKI:SUN:YJGX.0.2010-05-009.
  44. Zhou, J., Li, X. and Mitri, H.S. (2016), "Classification of rockburst in underground projects: comparison of ten supervised learning methods", J. Comput. Civil Eng., 30(5), 04016003. https://doi:10.1061/(ASCE)CP.1943-5487.0000553.
  45. Zou, J.F. and Su, Y. (2016), "Theoretical solutions of a circular tunnel with the influence of the out-of-plane stress based on the generalized hoek-brown failure criterion", Int. J. Geomech,, 16(3), 06015006. https://doi:10.1061/(ASCE)GM.1943-5622.0000547.
  46. Zuo, Y.J., Xu, T., Zhang, Y.B., Zhang, Y.P., Li, S.C., Zhao, G.F. and Chen, C.C. (2012), "Numerical study of zonal disintegration within a rock mass around a deep excavated tunnel", Int. J. Geomech., 12(4), 471-483. https://doi:10.1061/(ASCE)GM.1943-5622.0000155.