DOI QR코드

DOI QR Code

저층 고밀도 건물 교외 환경에서 3 GHz 및 24GHz의 건물 인입 손실과 클러터 손실의 전파 모델 결합

Propagation Model Combination of Building Entry Loss and Clutter Loss in Suburban Environment with Low-Rise High-Density Buildings at 3 and 24 GHz

  • 김동우 (조선대학교 전자공학부) ;
  • 오순수 (조선대학교 전자공학부)
  • 투고 : 2022.03.11
  • 심사 : 2022.04.17
  • 발행 : 2022.04.30

초록

본 논문에서는 저층 고밀도 교외 환경에서 신호의 클러터 손실(Clutter loss)과 건물 인입 손실(Building entry loss)을 측정 후 분석했다. 선정된 환경에서 BEL, CL, BEL과 CL 결합 등 3가지 전파 모델을 측정하였다. 각 모델 측정 결과 바탕으로 BEL과 CL을 결합하였을 때의 수치를 분석했다. 각각 주파수에서 BEL과 CL 결합 측정값은 27.55dB 와 26.12dB 였으며, 계산값과 차이는 -4.19dB와 5.82dB였다. 측정이 건물 내부에서 이루어졌다는 점을 고려할 때 이러한 차이는 미미해 보인다. 따라서 BEL과 CL의 각각 측정값 합산과 결합 모델의 측정값을 비교하였을 때 -4.19dB와 5.82dB 오차를 도출하였고, 본 결과는 유사한 사례의 전파 모델 분석 시 참고 자료로 활용될 수 있을 것이다.

We measured the clutter loss (CL) and building entry loss (BEL) of signals in a low-rise high-density suburban environment. Three propagation models for BEL, CL, and a combination of BEL and CL were measured in the selected environment. We then derived the figures when the BEL was combined with the CL. At the two frequencies, the measured value of combination of BEL and CL is 27.55 dB and 26.12dB, respectively, and the differences between the measured value and the sum were -4.19 dB and 5.82 dB. Considering that the measurement was performed inside a building, such a difference seems to be small. Therefore, when BEL and CL were measured separately and summed, and then combined and summed, differences of -4.19 dB and 5.82 dB were apparent. This this result can be referenced when similar case of a propagation model was analyzed.

키워드

과제정보

본 연구는 과학기술정보통신부 및 정보통신기술진흥센터의 정보통신·방송 연구개발사업의 일환으로 수행하였음.[2018-0-01439, 40 GHz 이하 실내외 환경의 전파특성 분석 및 예측모델 개발]

참고문헌

  1. T. Jost, G. Carrie, F. Perez-Fontan, W. Wang, and U. C. Fiebig, "A deterministic satellite-to-indoor entry loss model," IEEE Trans. Antennas and Propagation, vol. 61, 2013, pp. 2223-2230. https://doi.org/10.1109/TAP.2012.2232898
  2. ITU, Rec. ITU-R P.2108-1, Prediction of clutter loss, ITU-R Recommendation P-series, ITU, Geneva, 2021.
  3. ITU, Rec. ITU-R P.2109-1, Prediction of building entry loss, ITU-R Recommendation P-Series, ITU, Geneva, 2019.
  4. S. Salous, Radio Propagation Measurement and Channel Modelling. Hoboken: John Wiley & Sons, 2013.
  5. J. D. Parsons, The Mobile Radio Propagation Channel. Hoboken: John Wiley & Sons, 2013.
  6. H. E. Sallabi, "Terrain partial obstruction LOS path loss model for rural environments, " IEEE Antennas and Propagation Letters, vol. 10, 2011, pp. 151-154. https://doi.org/10.1109/LAWP.2011.2108254
  7. N. Faruk, O. W. Bello, A. A. Oloyede, N. T. Surajudeen-Bakinde, O. Oniyemi, L. A. Olawoyin, M. Ali, and A. Jimoh, "Clutter and terrain effects on path loss in the VHF/UHF bands," IET Microwaves, Antennas and Propagation. vol. 12, no. 1, 2018, pp. 69-76.
  8. J. Butaro, P. T. Juruganti, R. Jammalamadaka, T. Tinoco, and V. Protopopescu, "An event driven, simplified TLM method for predicting path-loss in cluttered environments," IEEE Trans. Antennas and Propagation, vol. 56, 2008, pp. 189-198. https://doi.org/10.1109/TAP.2007.913083
  9. J. Huang, O. Zahid, and S. Salous, "Clutter Loss Measurements and Modeling at 26 GHz Band," 2020 XXXIIIrd General Assembly and Scientific Symp. of the Int. Union of Radio Science, Rome, Italy, 2020, pp. 1-4.
  10. Y. Yoon, K. Kim, and Y. Chong, "Site Prediction Model for the over Rooftop Path in a Suburban Environment at Millimeter Wave," Int. J. of Antennas and Propagation, vol. 2019, Article ID 1371498, 2019, pp. 1-13.
  11. ITU, Rec. ITU-R P.2040-2, Effects of building materials and structures on radiowave propagation above about 100 MHz, ITU-R Recommendation P-Series, ITU, Geneva, 2021.
  12. K. L. Chee, A. Anggraini, T. Kaiser, and T Kurner, "Outdoor-to-indoor propagation loss measurements for broadband wireless access in rural areas," Proc. the 5th European Conf. on Antennas and Propagation (EUCAP), Rome, Italy, 2011, pp. 1376-1380.
  13. K. Saito, Q. Fan, N. Keerativorananm, and J. Takada, "Vertical and Horizontal Building Entry Loss Measurement in 4.9 GHz Band by Unmanned Aerial Vehicle," in IEEE Wireless Communications Letters, vol. 8, no. 2, 2019, pp. 444-447. https://doi.org/10.1109/lwc.2018.2875003
  14. S. Dahal, S. Ahmed, H. King, G. Bharatula, J. Campbell, and M. Faulkner, "Slant-Path Building Entry Loss at 24 GHz," IEEE Access, vol. 7, 2019, pp. 158525-158532. https://doi.org/10.1109/access.2019.2948938
  15. ITU, Rec. ITU-R P.1812-6, A path-specific propagation prediction method for point-to-area terrestrial services in the VHF and UHF band, ITU-R Recommendation P-Series, ITU, Geneva, 2021.
  16. H. Omote, M. Miyashita, and R. Yamaguchi, "Measurement of time-spatial characteristics between indoor spaces in different LOS buildings," Proc. the 2015 Int. Symp. on Antennas and Propagation (ISAP), Hobart, Australia, Nov. 2015, pp. 1-4.
  17. S. Oh, J. Choi, D. Kim, Y. Lee, and B. Cho, "Comparison of 0.75-24-GHz reach distances and ratios using propagation path loss measurements from urban and rural line-of-sight environments," J. Electromagnetic Engineering and Science, vol. 21, 2021, pp. 1-7. https://doi.org/10.26866/jees.2021.21.1.1
  18. T. S. Rappaport, Wireless Communications: Principles and Practice. Upper Saddle River: Prentice Hall, 2001.
  19. ITU, Independent and joint statistics of clutter loss and building entry loss-initial measurements, ITU-R WP3K Contribution 239, ITU, Geneva, 2018.
  20. D. Kim and S. Oh, "Verification on the Reduction Technique of Measurement Time of Total Radiated Power (TRP) by Using Effective Isotropic Radiated Power (EIRP) in 5G Frequency Band," J. of the Korea Institute of Electronic Communication Sciences, vol. 15, no. 5, Oct. 2020, pp. 835-840. https://doi.org/10.13067/JKIECS.2020.15.5.835
  21. D. Kim and S. Oh, "Verification and Analysis for Recommendation ITU-R P.526, P.1546, P.1812 of Propagation Model Loaded in Spectrum Management Intelligent System," J. of the Korea Institute of Electronic Communication Sciences, vol. 16, no. 2, Apr. 2021, pp. 247-253. https://doi.org/10.13067/JKIECS.2021.16.2.247
  22. Kakao Corp., https://map.kakao.com.