참고문헌
- Bakre, S.V. and Jangid, R.S. (2007), "Optimum parameters of tuned mass damper for damped main system", Struct. Control Health Monitor., 14, 448-470. https://doi.org/10.1002/stc.166
- Bandivadekar, T.P. and Jangid, R.S. (2013), "Optimization of multiple tuned mass dampers for vibration control of system under external excitation", J. Vib. Control, 19, 1854-1871. https://doi.org/10.1177/1077546312449849
- Barredo, E., Mendoza Larios J.G., Mayen, J., Flores-Hernandez, A.A., Colin, J. and Arias Montiel, M. (2019), "Optimal design for high-performance passive dynamic vibration absorbers under random vibration", Eng. Struct., 195, 469-489. https://doi.org/10.1016/j.engstruct.2019.05.105
- Cao, L. and Li, C. (2019), "Tuned tandem mass dampers-inerters with broadband high effectiveness for structures under white noise base excitations", Struct. Control Health Monitor., 26(4), e2319. https://doi.org/10.1002/stc.2319
- Cao, L., Li, C. and Chen, X. (2020), "Performance of multiple tuned mass dampers-inerters for structures under harmonic ground acceleration", Smart Struct. Syst., Int. J., 26(1), 49-61. https://doi.org/10.12989/sss.2020.26.1.049
- Clough, R.W. and Penzien, J. (2003), Dynamics of Structures, (3rd Edition), Berkeley, CA, USA, Computers and Structures.
- De Angelis, M., Giaralis, A., Petrini, F. and Pietrosanti, D. (2019), "Optimal tuning and assessment of inertial dampers with grounded inerter for vibration control of seismically excited base-isolated systems", Eng. Struct., 196, 109250. https://doi.org/10.1016/j.engstruct.2019.05.091
- De Domenico, D. and Ricciardi, G. (2018a), An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI)", Earthq. Eng. Struct. Dyn., 47(5), 1169-1192. https://doi.org/10.1002/eqe.3011
- De Domenico, D. and Ricciardi, G. (2018b), "Improving the dynamic performance of base-isolated structures via tuned mass damper and inerter devices: A comparative study", Struct. Control Health Monitor., 25(10), e2234. https://doi.org/10.1002/stc.2234
- De Domenico, D., Ricciardi, G. and Zhang, R. (2020), "Optimal design and seismic performance of tuned fluid inerter applied to structures with friction pendulum isolators", Soil Dyn. Earthq. Eng., 132, 106099. https://doi.org/10.1016/j.soildyn.2020.106099
- Di Matteo, A., Masnata, C. and Pirrotta, A. (2019), "Simplified analytical solution for the optimal design of Tuned Mass Damper Inerter for base isolated structures", Mech. Syst. Signal Process., 134, 106337. https://doi.org/10.1016/j.ymssp.2019.106337
- Garrido, H., Curadelli, O. and Ambrosini, D. (2013), "Improvement of tuned mass damper by using rotational inertia through tuned viscous mass damper", Eng. Struct., 56, 2149-2153. https://doi.org/10.1016/j.engstruct.2013.08.044
- Hu, Y., Chen, M.Z., Shu, Z. and Huang, L. (2015), "Analysis and optimisation for inerter-based isolators via fixed-point theory and algebraic solution", J. Sound Vib., 346, 17-36. https://doi.org/10.1016/j.jsv.2015.02.041
- Hwang, J.-S., Kim, J. and Kim, Y.-M. (2007), "Rotational inertia dampers with toggle bracing for vibration control of a building structure", Eng. Struct., 29(6), 1201-1208. https://doi.org/10.1016/j.engstruct.2006.08.005
- Jadhav, M.B. and Jangid, R.S. (2006), "Response of base-isolated liquid storage tanks to near-fault motions", Struct. Eng. Mech., Int. J., 23(6), 615-634. https://doi.org/10.12989/sem.2006.23.6.615
- Jangid, R.S. and Kelly, J.M. (2001), "Base isolation for near-fault motions", Earthq. Eng. Struct. Dyn., 30(5), 691-707. https://doi.org/10.1002/eqe.31
- Kataria, N.P. and Jangid, R.S. (2016), "Seismic protection of the horizontally curved bridge with semi-active variable stiffness damper and isolation system", Adv. Struct. Eng., 19(7), 1103-1117. https://doi.org/10.1177/1369433216634477
- Kelly, J.M. (1997), Earthquake-Resistant Design with Rubber, (2nd Ed.), London, UK, Springer-Verlag.
- Kiureghian, A.D. and Neuenhofer, A. (1992), "Response spectrum method for multi-support seismic excitations", Earthq. Eng. Struct. Dyn., 21(8), 713-740. https://doi.org/10.1002/eqe.4290210805
- Lazar, I.F. (2014), "Using an inerter-based device for structural vibration suppression", Earthq. Eng. Struct. Dyn., 43(8), 1129-1147. https://doi.org/10.1002/eqe.2390
- Li, Y. and Li, J. (2019), "Overview of the development of smart base isolation system featuring magnetorheological elastomer", Smart Struct. Syst., Int. J., 24(1), 37-52. https://doi.org/10.12989/sss.2019.24.1.037
- Li, C., Chang, K., Cao, L. and Huang, Y. (2021), "Performance of a nonlinear hybrid base isolation system under the ground motions", Soil Dyn. Earthq. Eng., 143, 106589. https://doi.org/10.1016/j.soildyn.2021.106589
- Lin, P.Y., Roschke, P.N. and Loh, C.H. (2006), "Hybrid base-isolation with magnetorheological damper and fuzzy control", Struct. Control Health Monitor., 14(3), 384-405. https://doi.org/10.1002/stc.163
- Madhekar, S.N. and Jangid, R.S. (2009), "Variable dampers for earthquake protection of benchmark highway bridges", Smart Mater. Struct., 18(11), 115011. https://doi.org/10.1088/0964-1726/18/11/115011
- Makris, N. and Chang, S.-P. (2000a), "Effect of viscous, viscoelastic and friction damping on the response of seismic isolated structures", Earthq. Eng. Struct. Dyn., 29(1), 85-107. https://doi.org/10.1002/(SICI)1096-9845(200001)29:1%3C85::AID-EQE902%3E3.0.CO;2-N
- Makris, N. and Chang, S.-P. (2000b), "Response of damped oscillators to cycloidal pulses", J. Eng. Mech., 126(2), 123-131. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:2(123)
- Makris, N. and Moghimi, G. (2019), "Displacements and forces in structures with inerters when subjected to earthquakes", J. Struct. Eng., 145(2), 04018260. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002267
- Marian, L. and Giaralis, A. (2014), "Optimal design of a novel tuned mass damper-inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems", Probabil. Eng. Mech., 38, 156-164. https://doi.org/10.1016/j.probengmech.2014.03.007
- Masri, S.F. and Caffrey, J.P. (2017), "Transient response of a SDOF system with an inerter to nonstationary stochastic excitation", J. Appl. Mech., 84(4), 041005. https://doi.org/10.1115/1.4035930
- Matsagar, V.A. and Jangid, R.S. (2008), "Base isolation for seismic retrofitting of structures", Pract. Period. Struct. Des. Constr., 13(4), 175-185. https://doi.org/10.1061/(ASCE)1084-0680(2008)13:4(175)
- Mazza, F. (2018), "Seismic demand of base-isolated irregular structures subjected to pulse-type earthquakes", Soil Dyn. Earthq. Eng., 108, 111-129. https://doi.org/10.1016/j.soildyn.2017.11.030
- Mazza, F. (2019), "Effects of the long-term behaviour of isolation devices on the seismic response of base-isolated buildings", Struct. Control Health Monitor., 26(4), e2331. https://doi.org/10.1002/stc.2331
- Mazza, F. (2021), "Base-isolation of a hospital pavilion against inplane-out-of-plane seismic collapse of masonry infills", Eng. Struct., 228, 111504. https://doi.org/10.1016/j.engstruct.2020.111504
- Nagarajaiah, S. and Sen, D. (2020), "Apparent-weakening by adaptive passive stiffness shaping along the height of multistory building using negative stiffness devices and dampers for seismic protection", Eng. Struct., 220, 110754. https://doi.org/10.1016/j.engstruct.2020.110754
- Patil, V.B. and Jangid, R.S. (2011), "Optimum multiple tuned mass dampers for the wind excited benchmark building", J. Civil Eng. Manag., 17(4), 540-557. https://doi.org/10.3846/13923730.2011.619325
- Pietrosanti, D., De Angelis, M. and Basili, M. (2017), "Optimal design and performance evaluation of systems with Tuned Mass Damper Inerter (TMDI)", Earthq. Eng. Struct. Dyn., 46(8), 1367-1388. https://doi.org/10.1002/eqe.2861
- Rao, P.B. and Jangid, R.S. (2001), "Performance of sliding systems under near-fault motions", Nuclear Eng. Des., 203, 259-272. https://doi.org/10.1016/S0029-5493(00)00344-7
- Reigles, D.G. and Symans, M.D. (2006), "Supervisory fuzzy control of a base-isolated benchmark building utilizing a neuro-fuzzy model of controllable fluid viscous dampers", Struct. Control Health Monitor., 13, 724-747. https://doi.org/10.1002/stc.108
- Roberts, J.B. and Spanos, P.D. (1990), Random Vibration and Statistical Linearization, Chichester, UK, Wiley.
- Salvi, J. and Rizzi, E. (2016), "Closed-form optimum tuning formulas for passive tuned mass dampers under benchmark excitations", Smart Struct. Syst., Int. J., 17(2), 231-256. https://doi.org/10.12989/sss.2016.17.2.231
- Spencer Jr, B.F. and Nagarajaiah, S. (2003), "State of the art of structural control", J. Struct. Eng., 129(7), 845-856. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(845)
- Tigli, O.F. (2012), "Optimum vibration absorber (tuned mass damper) design for linear damped systems subjected to random loads", J. Sound Vib., 331(13), 3035-3049. https://doi.org/10.1016/j.jsv.2012.02.017
- Tiong, P.L.Y., Kelly, J.M. and Or, T.T. (2017), "Design approach of high damping rubber bearing for seismic isolation", Smart Struct. Syst., Int. J., 20(3), 303-309. https://doi.org/10.12989/sss.2017.20.3.303
- Wang, B., Zhu, S. and Casciati, F. (2020), "Experimental study of novel self-centering seismic base isolators incorporating superelastic shape memory alloys", J. Struct. Eng., 146(7), 04020129. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002679
- Wen, Y., Chen, Z. and Hua, X. (2017), "Design and evaluation of tuned inerter-based dampers for the seismic control of MDOF structures", J. Struct. Eng., 143(4), 04016207. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001680