DOI QR코드

DOI QR Code

Smart tracking design for aerial system via fuzzy nonlinear criterion

  • Wang, Ruei-yuan (School of Science, Guangdong University of Petrochemical Technology) ;
  • Hung, C.C. (Department of Mechanical Engineering, National Taiwan University, Taipei & Faculty of National Hsin Hua Senior High School) ;
  • Ling, Hsiao-Chi (School of Information, Kainan University)
  • Received : 2021.03.28
  • Accepted : 2022.01.06
  • Published : 2022.04.25

Abstract

A new intelligent adaptive control scheme was proposed that combines the control based on interference observer and fuzzy adaptive s-curve for flight path tracking control of unmanned aerial vehicle (UAV). The most important contribution is that the control configurations don't need to know the uncertainty limit of the vehicle and the influence of interference is removed. The proposed control law is an integration of fuzzy control estimator and adaptive proportional integral (PI) compensator with input. The rated feedback drive specifies the desired dynamic properties of the closed control loop based on the known properties of the preferred acceleration vector. At the same time, the adaptive PI control compensate for the unknown of perturbation. Additional terms such as s-surface control can ensure rapid convergence due to the non-linear representation on the surface and also improve the stability. In addition, the observer improves the robustness of the adaptive fuzzy system. It has been proven that the stability of the regulatory system can be ensured according to linear matrix equality based Lyapunov's theory. In summary, the numerical simulation results show the efficiency and the feasibility by the use of the robust control methodology.

Keywords

Acknowledgement

The authors are grateful for the research grants given to RY Wang from the Projects of Talents Recruitment of GDUPT (NO. 2019rc098) in Guangdong Province, Peoples R China No. 2019rc098 as well as to the anonymous reviewers for constructive suggestions.

References

  1. Campa, G., Innocenti, M. and Nasuti, F. (1998), "Robust control of underwater vehicles: sliding mode control vs. mu synthesis", Proceedings of OCEANS '98 Conference, Vol. 2, 16401644.
  2. Chawla, K.K. (2012), Fatigue and Creep, (3rd Edition), Springer, New York.
  3. Chen, C.W. (2005), "Stability conditions of fuzzy systems and its application to structural and mechanical systems", Adv. Eng. Softw., 37, 624-629. https://doi.org/10.1016/j.advengsoft.2005.12.002
  4. Chen, C.W. (2007), "The stability of an oceanic structure with T-S fuzzy models", Math. Comput. Simul., 80, 402-426. https://doi.org/10.1016/j.matcom.2009.08.001
  5. Chen, C.W. (2009), "Modeling and control for nonlinear structural systems via a NN-based approach", Expert Syst. Appl., 36, 4765-4772. https://doi.org/10.1016/j.eswa.2008.06.062
  6. Chen, C.W. (2011a), "Stability analysis and robustness design of nonlinear systems: An NN-based approach", Appl. Soft Comput., 11, 2735-2742. https://doi.org/10.1016/j.asoc.2010.11.004
  7. Chen, C.W. (2011b), "Modeling, control, and stability analysis for time-delay TLP systems using the fuzzy Lyapunov method", Neural Comput. Applicat., 20, 527-534. https://doi.org/10.1007/s00521-011-0576-8
  8. Chen, C.W. (2014a), "Interconnected TS fuzzy technique for nonlinear time-delay structural systems", Nonlin. Dyn., 76(1), 13-22. https://doi.org/10.1007/s11071-013-0841-8
  9. Chen, C.W. (2014b), "A criterion of robustness intelligent nonlinear control for multiple time-delay systems based on fuzzy Lyapunov methods", Nonlin. Dyn., 76(1), 23-31. https://doi.org/10.1007/s11071-013-0869-9
  10. Chen, C.Y.J. (2020), "System simulation and synchronization for optimal evolutionary design of nonlinear controlled systems", Smart Struct. Syst., Int. J., 26(6), 797-807. https://doi.org/10.12989/sss.2020.26.6.797
  11. Chen, Z.Y. (2022), "Stochastic intelligent GA-NN controller design for active TMD shear building", Struct. Eng. Mech., Int. J., 81(1), 51-57. https://doi.org/10.12989/sem.2022.81.1.051
  12. Hung, C.C., Chen, T., Abi Astolfi, A., Rao, S.R., Young, H.T., Wutim, C. and Chen, C.Y.J. (2019), "Optimal fuzzy design of Chua's circuit system", Int. J. Innov. Comput. Inform. Control, 15(6), 2355-2366.
  13. Chen, T., Morozov, S.N. and Chen, C.Y.J. (2019), "Hazard Data Analysis for Underwater Vehicles by Submarine Casualties", Marine Technol. Soc. J., 53(6), 21-26. https://doi.org/10.4031/MTSJ.53.6.2
  14. Chen, T. and Chen, C.Y.J. (2019), "Meteorological Tidal Predictions in the Mekong Estuary Using an Evolved ANN Time Series", Marine Technol. Soc. J., 53(6), 27-34. https://doi.org/10.4031/MTSJ.53.6.3
  15. Chen, T. and Chen, C.Y.J. (2019a), "Meteorological Tidal Predictions in the Mekong Estuary Using an Evolved ANN Time Series", Marine Technol. Soc. J., 53(6), 27-34. https://doi.org/10.4031/MTSJ.53.6.3
  16. Chen, T. and Chen, C.Y.J. (2020), "Intelligent fuzzy algorithm for nonlinear discrete-time systems", Transact. Inst. Measur. Control, 42(7), 1358-1374. https://doi.org/10.1177/0142331219891383
  17. Chen, T. and Cheng, C.Y.J. (2019b), "Modelling and verification of an automatic controller for a water treatment mixing tank", Desalin. Water Treat., 159, 318-326. https://doi.org/10.5004/dwt.2019.24143
  18. Chen, T. and Chen, J.C.Y. (2019c), "Decentralized fuzzy C-Means robust algorithm for continuous systems", Aircr. Eng. Aerosp. Technol., 92(2), 222-228. https://doi.org/10.1108/AEAT-04-2019-0082
  19. Chen, C.W., Chiang, W.L., Tsai, C.H., Chen, C.Y. and Wang, M.H. (2006), "Fuzzy Lyapunov method for stability conditions of nonlinear systems", Int. J. Artif. Intell. Tools, 15, 163-172. https://doi.org/10.1142/S0218213006002618
  20. Chen, C.W., Yeh, K., Chiang, W.L., Chen, C.Y. and Wu, D.J. (2007a), "Modeling, H∞ control and stability analysis for structural systems using Takagi-Sugeno fuzzy model", J. Vib. Control, 13, 1519-1534. https://doi.org/10.1177/1077546307073690
  21. Chen, C.W., Lin, C.L., Tsai, C.H., Chen, C.Y. and Yeh, K. (2007b), "A novel delay-dependent criterion for time-delay TS fuzzy systems using fuzzy Lyapunov method", Int. J. Artif. Intell. Tools, 16, 545-552. https://doi.org/10.1142/S0218213007003400
  22. Chen, C.W., Yeh, K. and Liu, K.F.R. (2009a), "Adaptive fuzzy sliding mode control for seismically excited bridges with lead rubber bearing isolation", Int. J. Uncertain. Fuzziness Knowl. Based Syst., 17, 705-727. https://doi.org/10.1142/S0218488509006224
  23. Chen, C.Y., Shen, C.W., Chen, C.W., Liu, K.F.R. and Cheng, M.J. (2009b), "A stability criterion for time-delay tension leg platform systems subjected to external force", China Ocean Eng., 23, 49-57.
  24. Chen, C.Y., Lin, J.W., Lee, W.I. and Chen, C.W. (2010), "Fuzzy control for an oceanic structure: a case study in time-delay TLP system", J. Vib. Control, 16, 147-160. https://doi.org/10.1177/1077546309339424
  25. Chen, C.W., Shen, C.W., Chen, C.Y. and Cheng, M.J. (2011a), "Stability analysis of an oceanic structure using the Lyapunov method", Eng. Computat., 27, 186-204. https://doi.org/10.1108/02644401011022364
  26. Chen, C.W., Chen, P.C. and Chiang, W.L. (2011b), "Stabilization of adaptive neural network controllers for nonlinear structural systems using a singular perturbation approach", J. Vib. Control, 17, 1241-1252. https://doi.org/10.1177/1077546309352827
  27. Chen, T., Morozov, S.N. and Chen, C.Y.J. (2019), "Hazard Data Analysis for Underwater Vehicles by Submarine Casualties", Marine Technol. Soc. J., 53(6), 21-26. https://doi.org/10.4031/MTSJ.53.6.2
  28. Chen, T., Kapron, N. and Chen, J.Y. (2020a), "Using evolving ANN-based algorithm models for accurate meteorological forecasting applications in Vietnam", Mathe. Probl. Eng., 8179652. https://doi.org/10.1155/2020/8179652
  29. Chen, T., Dkuo, N.J. and Chen, C.Y.J. (2020b), "A composite control for UAV systems with time delays", Aircr. Eng. Aerosp. Technol., 92(7), 949-954. https://doi.org/10.1108/AEAT-11-2019-0219
  30. Chen, T., Lohnash, M., Owens, E. and Chen, C.Y.J. (2020c), "PDC Intelligent control-based theory for structure system dynamics", Smart Struct. Syst., Int. J., 25(4), 401-408. https://doi.org/10.12989/sss.2020.25.4.401
  31. Chen, Z.Y., Jiang, R., Wang, R.Y. and Chen, T. (2021a), "Apply a robust fuzzy LMI control scheme with AI algorithm to civil frame building dynamic analysis", Comput. Concrete, Int. J., 28(4), 433-440. https://doi.org/10.12989/cac.2021.28.4.433
  32. Chen, Z.Y., Huang, L., Wu, H., Meng, Y., Xiang, S. and Chen, T. (2021b), "Grey signal predictor and evolved control for practical nonlinear mechanical systems", J. Grey Syst., 33(1), 156-170.
  33. Chen, Z.Y., Wang, R.Y., Meng, Y., Fu, Q. and Chen, T. (2021c), "Smart structural control and analysis for earthquake excited building with evolutionary design", Struct. Eng. Mech., Int. J., 79(2), 131-139. https://doi.org/10.12989/sem.2021.79.2.131
  34. Chen, Z.Y., Jiang, R., Wang, R.Y. and Chen, T. (2021d), "Active TMD systematic design of fuzzy control and the application in high-rise buildings", Earthq. Struct., Int. J., 21(6), 577-585. https://doi.org/10.12989/eas.2021.21.6.577
  35. Chen, T., Kapronand, N., Hsieh, C.Y. and Chen, J.C. (2021e), "Evolved auxiliary controller with applications to aerospace", Aircr. Eng. Aerosp. Technol., 93(4), 529-543. https://doi.org/10.1108/AEAT-12-2019-0233
  36. Chen, T., Kuo, D., Huiwi, M., Gong-Yo, T. and Chen, J.Y. (2021f), "Evolved predictive vibration control for offshore platforms based on the Lyapunov stability criterion", Ships Offshore Struct., 16(7), 700-713. https://doi.org/10.1080/17445302.2020.1776548
  37. Chen, C.Y.J., Chen, T., Huang, Y.C., Hung, C.C., Frias, S. and Muhammad, J.A. (2021g), "Smart structural stability and NN based intelligent control for nonlinear systems", Smart Struct. Syst., Int. J., 27(6), 917-926. https://doi.org/10.12989/sss.2021.27.6.917
  38. Chen, T., Hung, C.C., Huang, Y.C., Chen, J.C., Rahman, S. and Mozumder, T.I. (2021h), "Grey signal predictor and fuzzy controls for active vehicle suspension systems via Lyapunov theory", Int. J. Comput. Commun. Control, 16(3), 3991. https://doi.org/10.15837/ijccc.2021.3.3991
  39. Chen, Z.Y., Meng, Y. and Chen, T. (2021i), "NN model-based evolved control by DGM model for practical nonlinear systems", Exp. Syst. Appl., 193, 115873. https://doi.org/10.1016/j.eswa.2021.115873
  40. Chen, Z.Y., Meng, Y., Wang, R.Y. and Chen, T. (2022), "Systematic fuzzy navier-stokes equations for aerospace vehicles", Aircr. Eng. Aerosp. Technol., 94(3), 351-359. https://doi.org/10.1108/AEAT-06-2020-0109
  41. Cheng, J. (2021), "Grey FNN control and robustness design for practical nonlinear systems", J. Eng. Res. https://doi.org/10.36909/jer.11273
  42. Choi, B.J., Kwak, S.W. and Kim, B.K. (2000), "Design and stability analysis of single input fuzzy logic controller", IEEE Transact. Syst. Man Cybernet. Part B (Cybernetics), 30(2), 303-309. https://doi.org/10.1109/3477.836378
  43. DeBitetto, P.A. (1995), "Fuzzy logic for depth control of unmanned undersea vehicles", IEEE J. Oceanic Eng., 20(3), 242-248. https://doi.org/10.1109/48.393079
  44. Deshpande, V.S. and Phadke, S.B. (2011), "Control of uncertain nonlinear systems using an uncertainty and disturbance estimator", ASME. J. Dyn. Syst., Meas., 134(2), 024501-024507. https://doi.org/10.1115/1.4005042
  45. Feng, Z. and Allen, R. (2004), "Reduced order H∞ control of an autonomous underwater vehicle", Control Eng. Practice, 12(12), 1511-1520. https://doi.org/10.1016/j.conengprac.2004.02.004
  46. Fossen, T.I. (1994), Guidance and Control of Ocean Vehicles, John Wiley and Sons, pp. 448-451.
  47. Geranmehr, B. and Nekoo, S.R. (2015), "Nonlinear suboptimal control of fully coupled non-affine six-DOF autonomous underwater vehicle using the state-dependent Riccati equation", Ocean Eng., 96(1), 248-257. https://doi.org/10.1016/j.oceaneng.2014.12.032
  48. Goheen, K.R. and Jefferys, E.R. (1990), "Multivariable self-turning autopilots for autonomous remotely operated underwater vehicles", IEEE J. Oceanic Eng., 15(3), 144-151. 10.1109/48.107142
  49. Hsiao, F.H., Chen, C.W., Liang, Y.W., Xu, S.D. and Chiang, W.L. (2005a), "T-S fuzzy controllers for nonlinear interconnected systems with multiple time delays", IEEE Transact. Circuits Syst. I: Regular Papers, 52(9), 1883-1893. https://doi.org/10.1109/TCSI.2005.852492
  50. Hsiao, F.H., Hwang, J.D., Chen, C.W. and Tsai, Z.R. (2005b), "Robust stabilization of nonlinear multiple time-delay largescale systems via decentralized fuzzy control", IEEE Trans. Fuzzy Syst., 13, 152-163. https://doi.org/10.1109/TFUZZ.2004.836067
  51. Jalving, B. (1994), "The NDRE-AUV flight control system", IEEE J. Oceanic Eng., 19(4), 497-501. https://doi.org/10.1109/48.338385
  52. Kim, D.W. (2015), "Tracking of REMUS autonomous underwater vehicles with actuator saturations", Automatica, 58(2), 15-21. https://doi.org/10.1016/j.automatica.2015.04.029
  53. Kim, M., Joe, H., Kim, J. and Yu, S.C. (2015), "Integral sliding mode controller for precise manoeuvring of autonomous underwater vehicle in the presence of unknown environmental disturbances", Int. J. Control, 88(10), 2055-2065. https://doi.org/10.1080/00207179.2015.1031182
  54. Kumar, R.P., Dasgupta, A. and Kumar, C.S. (2007), "Robust trajectory control of underwater vehicles using time delay control law", Ocean Eng., 34(5-6), 842-849. https://doi.org/10.1016/j.oceaneng.2006.04.003
  55. Lakhekar, G.V. and Waghmare, L.M. (2017), "Robust maneuvering of autonomous underwater vehicle:an adaptive fuzzy PI sliding mode control", Intell. Serv. Robot., 10(3), 195-212. https://doi.org/10.1007/s11370-017-0220-2
  56. Levant, A. (1998), "Robust exact differentiation via sliding mode technique", Automatica, 34(3), 379-384. https://doi.org/10.1016/S0005-1098(97)00209-4
  57. Li, J.H. and Lee, P.M. (2005), "Design of an adaptive nonlinear controller for depth control of an autonomous underwater vehicle", Ocean Eng., 32(17), 2165-2181. https://doi.org/10.1016/j.oceaneng.2005.02.012
  58. Londhe, P.S., Santhakumar, M., Patre, B.M. and Waghmare, L.M. (2017), "Task space control of an autonomous underwater vehicle manipulator system by robust single-input fuzzy logic control scheme", IEEE J. Oceanic Eng., 42(1), 13-28. https://doi.org/10.1109/JOE.2016.2548820
  59. Mohammadi, A., Tavakoli, M., Marquez, H.J. and Hashemzadeh, F. (2013), "Nonlinear disturbance observer design for robotic manipulators", Control Eng. Practice, 21(3), 253-267. https://doi.org/10.1016/j.conengprac.2012.10.008
  60. Moura, A., Rijo, R., Silva, P. and Crespo, S. (2010), "A multi-objective genetic algorithm applied to autonomous underwater underwater vehicles for sewage outfall plume dispersion observations", Appl. Soft Comput., 10(4), 1119-1126. https://doi.org/10.1016/j.asoc.2010.05.009
  61. Naik, M.S. and Singh, S.N. (2007), "State-dependent Riccati equation-based robust dive plane control of AUV with control constraints", Ocean Eng., 34(11), 1711-1723. https://doi.org/10.1016/j.oceaneng.2006.10.014
  62. Pisano, A. and Usai, E. (2004), "Output-feedback control of an underwater vehicle prototype by higher-order sliding modes", Automatica, 40(9), 1525-1531. https://doi.org/10.1016/j.automatica.2004.03.016
  63. Santhakumar, M. and Asokan, T. (2010), "Investigations on the hybrid tracking control of an underactuated autonomous underwater robot", Adv. Robot., 24(2), 1529-1556. https://doi.org/10.1163/016918610X512587
  64. Silvestre, C., Pascoal, A. and Kaminer, I. (2002), "On the design of gain scheduled trajectory tracking controllers", Int. J. Robust Nonlinear Control, 12(9), 797-839. https://doi.org/10.1002/rnc.705
  65. Tsai, P.W. (2012a), "Bat algorithm inspired algorithm for solving numerical optimization problems", Appl. Mech. Mater., 148, 134-137. https://doi.org/10.4028/www.scientific.net/AMM.148-149.134
  66. Tsai, P.W. (2012b), "A novel strategy to determine the insurance and risk control plan for natural disaster risk management", Natural Hazards, 64, 1391-1403. https://doi.org/10.1007/s11069-012-0305-3
  67. Tsai, P.W. (2015), "Structural system simulation and control via NN based fuzzy model", Struct. Eng. Mech., Int. J., 56(3), 385-407. https://doi.org/10.12989/sem.2015.56.3.385
  68. Varvani-Farahani, H. and Mivehchi, A. (2011), "Temperature dependence of stress-fatigue life data of FRP composites", Mech. Compos. Mater., 47(3), 185-192. https://doi.org/10.1007/s11029-011-9197-7
  69. Wozney, G.P. (1962), "Resonant-vibration fatigue testing", Exp. Mech., 2, 1-8. https://doi.org/10.1007/BF02325804
  70. Yeh, K., Chen, C.Y. and Chen, C.W. (2007), "Robustness design of time-delay fuzzy systems using fuzzy Lyapunov method", Appl. Math. Comput., 205, 568-577. https://doi.org/10.1016/j.amc.2008.05.104
  71. Ying, Z.G., Ni, Y.Q. and Duan, Y.F. (2019), "Stochastic stability control analysis of an inclined stay cable under random and periodic support motion excitations", Smart Struct. Syst., Int. J., 23(6), 641-651. https://doi.org/10.12989/sss.2019.23.6.641
  72. Zandi, Y., Shariati, M., Marto, A., Wei, X., Karaca, Z., Dao, D., Toghroli, A., Hashemi, M.H., Sedghi, Y., Wakil, K. and Khorami, M. (2018), "Computational investigation of the comparative analysis of cylindrical barns subjected to earthquake", Steel Compos. Struct., Int. J., 28(4), 439-447. https://doi.org/10.12989/scs.2018.28.4.439
  73. Zhang, Y. (2015), "A fuzzy residual strength based fatigue life prediction method", Struct. Eng. Mech., Int. J., 56(2), 201-221. https://doi.org/10.12989/sem.2015.56.2.201
  74. Zhou, X., Lin, Y. and Gu, M. (2015), "Optimization of multiple tuned mass dampers for large-span roof structures subjected to wind loads", Wind Struct., Int. J., 20(3), 363-388. https://doi.org/10.12989/was.2015.20.3.363