Acknowledgement
The authors acknowledge Brazilian National research Council - CNPQ and Petrobras BR for the financial support.
References
- Ali, M.F., El Ali, B.M. and Speight, J.G. (2005), Handbook of Industrial Chemistry, McGraw-Hill Companies, New York, NY, USA.
- Alih, S.C., Vafaei, M., Ismail, N. and Pabarja, A. (2018), "Experimental study on a new damping device for mitigation of structural vibrations under harmonic excitation", Earthq. Struct., Int. J., 14(6), 567-576. https://doi.org/10.12989/eas.2018.14.6.567
- An, Q., Chen, Z., Ren, Q., Liu, H. and Yan, X. (2015), "Control of human-induced vibration of an innovative CSBS-CSCFS", J. Constr. Steel Res., 115, 359-371. https://doi.org/10.1016/j.jcsr.2015.08.030
- Battista, R.C., Pfeil, M.S., Carvalho, E.M.L. and Varela, W.D. (2018), "Double controller of wind induced bending oscillations in telecom towers", Smart Struct. Syst., Int. J., 21(1), 99-111. https://doi.org/10.12989/sss.2018.21.1.099
- BS 5400: Part 10 (1980), Steel, concrete and composite bridges, Code of practice for fatigue, London: BSI.
- Cao, L., Li, C. and Chen, X. (2021), "Performance of multiple tuned mass dampers-inerters for structures under harmonic ground acceleration", Smart Struct. Syst., Int. J., 26(1), 49-61. https://doi.org/10.12989/sss.2020.26.1.049
- Duran, B., Tunaboyu, O., Kaplan, O. and Avsar, O. (2018), "Effectiveness of seismic repairing stages with CFRPs on the seismic performance of damage RC frames", Struct. Eng. Mech., Int. J., 67(3), 233-244. https://doi.org/10.12989/sem.2018.67.3.233
- Fallahpasand, S., Dardel, M., Pashaei, M.H. and Daniali, H.R.M. (2015), "Investigation and optimization of nonlinear pendulum vibration absorber for horizontal vibration suppression of damped system", Struct. Des. Tall Special Build., 24, 873-893. https://doi.org/10.1002/tal.1216
- Gerges, R.R. and Vickery, B.J. (2005), "Optimum design of pendulum-type tuned mass dampers", Struct. Des. Tall Special Build., 14, 353-368. https://doi.org/10.1002/tal.273
- Gurney, T.R, (1976), "Fatigue design rules for welded steel joints", Weld. Inst. Res. Bull., May, pp. 115-124.
- Ikeda, T., Harata, Y. and Takeeda, A. (2017), "Nonlinear responses of spherical pendulum vibration absorbers in tower like 2DOF structures", Nonlinear Dyn., 88, 2915-2932. https://doi.org/10.1007/s11071-017-3421-5
- Letzsch, W. (2015), "Fluid Catalytic Cracking (FCC) in Petroleum Refining", In: Handbook of Petroleum Processing, (Treese S., Pujado P., Jones D. Eds.), Springer, Cham.
- Lin, C.-S., Zhang, J., Wang, J.-F. and Li, C.-C. (2019), "Vibration control for serviceability enhancement of offshore platforms against environmental loadings", Smart Struct. Syst., Int. J., 24(3), 402-414. https://doi.org/10.12989/sss.2019.24.3.403
- Mansour, A.E., Wirsching, P.H., White, G.J. and Ayyub, B.M. (1996), "Probability-Based Ship Design: Implementation of Design Guidelines", SSC 392, NTIS, Washington, D.C., 200 pages.
- Matsuishi, M. and Endo, T. (1968), "Fatigue of metals subjected to varying stress-fatigue lives under random loading", Proc. Kyushu District Meeting, JSEM, Fukuoka, Japan, pp. 37-40.
- Medeiros, J., Battista R.C. and Carvalho, E.M.L. (2010), "Fluid Catalytic Cracking (FCC) Riser Submitted to Flow Induced Vibration Fatigue Life Estimation", XXIX Computational Methods for the Analysis and Design of Offshore, Buenos Aires, Argentina, November.
- Nguyen, T., Gad, E. and Wilson, J. (2014), "Mitigation footfall-induced vibration in long-span floors", Austral. J. Struct. Eng., 15(1), 97-109.
- Pinheiro, M.A.S. and Battista, R.C. (2012), "Efficiency of a spatial pendulum in vibration control", XXXV Jornadas Sulamericanas de Engenharia Estrutural, Rio de Janeiro, Brazil, September. [In Portuguese]
- Pinheiro, C.I.C., Fernandes, J.L., Domingues, L., Chambel, A.J.S., Graca, I., Oliveira, N.M.C., Cerqueira, H.S. and Ribeiro, F.R. (2011), "Fluid Catalytic Cracking (FCC) Process Modeling, Simulation, and Control", Ind. Eng. Chem. Res., 51, 1-29. https://doi.org/10.1021/ie200743c
- Roffel, A.J., Narasimhan, S. and Haskett, T. (2013), "Performance of pendulum tuned mass dampers in reducing the responses of flexible structures", J. Struct. Eng., 139, 04013019. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000797
- Sado, D., Freunlich, J. and Dudanowicz, A. (2016), "The dynamics of a coupled mechanical system with spherical pendulum", Vib. Phys. Syst., 27, 309-316.
- Shahabi, A.B., Ahari, Z. and Barghian, M. (2020), "Suspended columns for seismic isolation in structures (SCSI): experimental and numerical studies", Earthq. Struct., Int. J., 19(1), 17-28. https://doi.org/10.12989/eas.2020.19.1.17
- Sharma, R.K., Domala, V. and Sharma, R. (2019), "Dynamic analysis of an offshore jacket platform with a tuned mass damper under the seismic and ice loads", Ocean Syst. Eng., Int. J., 9(4), 369-390. https://doi.org/10.12989/ose.2019.9.4.369
- Speight, J.G. (2006), The Chemistry and Technology of Petroleum, Taylor & Francis Group (LCC), Laramie, WY, USA.
- Sun, C., Jahangiri, V. and Sun, H. (2019), "Performance of a 3D pendulum tuned mass damper in offshore wind turbines under multiple hazards and system variations", Smart Struct. Syst., Int. J., 24(1), 53-65. https://doi.org/10.12989/sss.2019.24.1.053
- Viet, L.D. and Park, Y. (2011), "Vibration control of the axisymmetric spherical pendulum by dynamic vibration absorver moving in radial direction", J. Mech. Sci. Tech., 25(7), 1703-1709. https://doi.org/10.1007/s12206-011-0418-8
- Vogt, T.T.C. and Weckhuysen, B.M. (2015), "Fluid catalytic cracking: recent developments on the grand old lady zeolite catalysis", Chem. Soc. Rev., 44, 7342-7370. https://doi.org/10.1039/C5CS00376H
- Wang, L., Shi, W., Zhou, Y. and Zhang, Q. (2020), "Semi-active eddy current pendulum tuned mass damper with variable frequency and damping", Smart Struct. Syst., Int. J., 25(1), 65-80. https://doi.org/10.12989/sss.2020.25.1.065
- Zahrai, S.M. and Froozanfar, M. (2019), "Performance of passive and active MTMDs in seismic response of Ahvaz calbe-stayed bridge", Smart Struct. Syst., Int. J., 23(5), 449-466. https://doi.org/10.12989/sss.2019.23.5.449
- Zhang, R., Cao, Y. and Dai, K. (2021), "Response control of wind turbines with undergrounded tuned mass inerter system (TMIS) under wind loads", Wind Struct., Int. J., 32(6), 573-586. https://doi.org/10.12989/was.2021.32.6.573
- Zhu, L-H., Li, G. and Dong, Z-Q. (2021), "Dynamic test and numerical simulation on avoiding the weak-story failure mechanism in structures using LSFDs", Steel Compos. Struct., Int. J., 40(2), 175-191. https://doi.org/10.12989/scs.2021.40.2.175