References
- Ahour, M., Hataf, N. and Azar, E. (2019), "A mathematical model based on artificial neural networks to predict the stability of rock slopes using the generalized Hoek-Brown failure criterion", Geotech. Geol. Eng., 38(1), 587-604. https://doi.org/10.1007/s10706-019-01049-y
- Alam, Z., Zhang, C. and Samali, B. (2020), "Influence of seismic incident angle on response uncertainty and structural performance of tall asymmetric structure", Struct. Des. Tall Special Build., 29(12), e1750. https://doi.org/10.1002/tal.1750
- Azarafza, M., Nanehkaran, Y.A., Rajabion, L., Akgun, H., Rahnamarad, J., Derakhshani, R. and Raoof, A. (2020), "Application of the modified Q-slope classification system for sedimentary rock slope stability assessment in Iran", Eng. Geol., 264, 105349. https://doi.org/10.1016/j.enggeo.2019.105349
- Berning, A.W., Gadd, R.D., Sweeney, K., MacDonald, L., Eng, R.Y., Hess, Z.L. and Pruitt, J.N. (2012), "Sexual cannibalism is associated with female behavioural type, hunger state and increased hatching success", Animal behaviour, 84(3), 715-721. https://doi.org/10.1016/j.anbehav.2012.06.030
- Bhattacharjya, R.K. (2020), Nature-Inspired Methods for Metaheuristics Optimization, Springer, pp. 323-334. https://doi.org/10.1007/978-3-030-26458-1_18
- Boga, A.R., Ozturk, M. and Topcu, I.B. (2013), "Using ANN and ANFIS to predict the mechanical and chloride permeability properties of concrete containing GGBFS and CNI", Compos. Part B: Eng., 45(1), 688-696. https://doi.org/10.1016/j.compositesb.2012.05.054
- Chaabene, W.B., Flah, M. and Nehdi, M.L. (2020), "Machine learning prediction of mechanical properties of concrete: Critical review", Constr. Build. Mater., 260, 119889. https://doi.org/10.1016/j.conbuildmat.2020.119889
- Chen, H.L., Wang, G., Ma, C., Cai, Z.N., Liu, W.B. and Wang, S.J. (2016), "An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson's disease", Neurocomputing, 184, 131-144. https://doi.org/10.1016/j.neucom.2015.07.138
- Chen, H., Heidari, A.A., Chen, H., Wang, M., Pan, Z. and Gandomi, A.H. (2020), "Multi-population differential evolution-assisted Harris hawks optimization: Framework and case studies", Future Generat. Comput. Syst., 111, 175-198. https://doi.org/10.1016/j.future.2020.04.008
- Chithra, S., Kumar, S.S., Chinnaraju, K. and Ashmita, F.A. (2016), "A comparative study on the compressive strength prediction models for High Performance Concrete containing nano silica and copper slag using regression analysis and Artificial Neural Networks", Constr. Build. Mater., 114, 528-535. https://doi.org/10.1016/j.conbuildmat.2016.03.214
- DeRousseau, M.A., Kasprzyk, J.R. and Srubar Iii, W.V. (2018), "Computational design optimization of concrete mixtures: A review", Cement Concrete Res., 109, 42-53. https://doi.org/10.1016/j.cemconres.2018.04.007
- Dyson, A.P. and Tolooiyan, A. (2020), "Comparative approaches to probabilistic finite element methods for slope stability analysis", Simul. Modell. Pract. Theory, 100, 102061. https://doi.org/10.1016/j.simpat.2019.102061
- Fattahi, H. and Zandy Ilghani, N. (2020), "Slope stability analysis using Bayesian Markov chain Monte Carlo method", Geotech. Geol. Eng., 1-10. https://doi.org/10.1007/s10706-019-01172-w
- Gao, N., Wang, B., Lu, K. and Hou, H. (2021), "Complex band structure and evanescent Bloch wave propagation of periodic nested acoustic black hole phononic structure", Appl. Acoust., 177, 107906. https://doi.org/10.1016/j.apacoust.2020.107906
- Han, C., Zhang, B., Chen, H., Wei, Z. and Liu, Y. (2019), "Spatially distributed crop model based on remote sensing", Agricul. Water Manag., 218, 165-173. https://doi.org/10.1016/j.agwat.2019.03.035
- Hayyolalam, V. and Kazem, A.A.P. (2020), "Black Widow Optimization Algorithm: A novel meta-heuristic approach for solving engineering optimization problems", Eng. Applicat. Artif. Intell., 87, 103249. https://doi.org/10.1016/j.engappai.2019.103249
- Hecht-Nielsen, R. (1992), Neural Networks for Perception, Elsevier, pp. 65-93. https://doi.org/10.1016/B978-0-12-741252-8.50010-8
- Himanshu, N., Kumar, V., Burman, A., Maity, D. and Gordan, B. (2020), "Grey wolf optimization approach for searching critical failure surface in soil slopes", Eng. Comput., 37, 2059-72. https://doi.org/10.1007/s00366-019-00927-6
- Hoang, N.D. and Pham, A.D. (2016), "Hybrid artificial intelligence approach based on metaheuristic and machine learning for slope stability assessment: A multinational data analysis", Expert Syst. Applicat., 46, 60-68. https://doi.org/10.1016/j.eswa.2015.10.020
- Hong, X.C., Wang, G.Y., Liu, J., Song, L. and Wu, E.T. (2021), "Modeling the impact of soundscape drivers on perceived birdsongs in urban forests", J. Cleaner Product., 292, 125315. https://doi.org/10.1016/j.jclepro.2020.125315
- Hornik, K. (1991), "Approximation capabilities of multilayer feedforward networks", Neural Networks, 4(2), 251-257. https://doi.org/10.1016/0893-6080(91)90009-T
- Houssein, E.H., Helmy, B.E.D., Oliva, D., Elngar, A.A. and Shaban, H. (2020), "A novel black widow optimization algorithm for multilevel thresholding image segmentation", Expert Syst. Applicat., 167, 114159. https://doi.org/10.1016/j.eswa.2020.114159
- Hu, L., Hong, G., Ma, J., Wang, X. and Chen, H. (2015), "An efficient machine learning approach for diagnosis of paraquat-poisoned patients", Comput. Biol. Med., 59, 116-124. https://doi.org/10.1016/j.compbiomed.2015.02.003
- Hu, J., Chen, H., Heidari, A.A., Wang, M., Zhang, X., Chen, Y. and Pan, Z. (2020), "Orthogonal learning covariance matrix for defects of grey wolf optimizer: Insights, balance, diversity, and feature selection", Knowledge-Based Systems, 213, 106684. https://doi.org/10.1016/j.knosys.2020.106684
- Kang, F., Xu, B., Li, J. and Zhao, S. (2017), "Slope stability evaluation using Gaussian processes with various covariance functions", Appl. Soft Comput., 60, 387-396. https://doi.org/10.1016/0893-6080(91)90009-T
- Khorasani, E., Amini, M., Hossaini, M.F. and Medley, E. (2019), "Evaluating the effects of the inclinations of rock blocks on the stability of bimrock slopes", Geomech. Eng., Int. J., 17(3), 281-287. https://doi.org/10.12989/gae.2019.17.3.281
- Kim, S.E., Vu, Q.V., Papazafeiropoulos, G., Kong, Z. and Truong, V.H. (2020), "Comparison of machine learning algorithms for regression and classification of ultimate load-carrying capacity of steel frames", Steel Compos. Struct., Int. J., 37(2), 193-209. https://doi.org/10.12989/scs.2020.37.2.193
- Krabbenhoft, K., Lyamin, A. and Krabbenhoft, J. (2015), "Optum Computational Engineering (Optum G2)", Available on: www.optumce.com
- Li, D.Q., Xiao, T., Cao, Z.J., Phoon, K.K. and Zhou, C.B. (2016), "Efficient and consistent reliability analysis of soil slope stability using both limit equilibrium analysis and finite element analysis", Appl. Mathe. Modell., 40(9-10), 5216-5229. https://doi.org/10.1016/j.apm.2015.11.044
- Li, C., Hou, L., Sharma, B.Y., Li, H., Chen, C., Li, Y., Zhao, X., Huang, H., Cai, Z. and Chen, H. (2018), "Developing a new intelligent system for the diagnosis of tuberculous pleural effusion", Comput. Methods Programs Biomed., 153, 211-225. https://doi.org/10.1016/j.cmpb.2017.10.022
- Lin, Y., Zhou, K. and Li, J. (2018), "Prediction of slope stability using four supervised learning methods", IEEE Access, 6, 31169-31179. https://doi.org/10.1109/access.2018.2843787
- Liu, J., Liu, Y. and Wang, X. (2020a), "An environmental assessment model of construction and demolition waste based on system dynamics: a case study in Guangzhou", Environ. Sci. Pollut. Res., 27(30), 37237-37259. https://doi.org/10.1007/s11356-019-07107-5
- Liu, J., Yi, Y. and Wang, X. (2020b), "Exploring factors influencing construction waste reduction: A structural equation modeling approach", J. Cleaner Product., 276, 123185. https://doi.org/10.1016/j.jclepro.2020.123185
- Liu, M., Xue, Z., Zhang, H. and Li, Y. (2021), "Dual-channel membrane capacitive deionization based on asymmetric ion adsorption for continuous water desalination", Electrochem. Commun., 125, 106974. https://doi.org/10.1016/j.elecom.2021.106974
- Luo, Z., Bui, X.N., Nguyen, H. and Moayedi, H. (2019), "A novel artificial intelligence technique for analyzing slope stability using PSO-CA model", Eng. Comput, 1-12. https://doi.org/10.1007/s00366-019-00839-5
- McCulloch, W.S. and Pitts, W. (1943), "A logical calculus of the ideas immanent in nervous activity", Bull. Mathe. Biophys., 5(4), 115-133. https://doi.org/10.1007/BF02478259
- Mishra, M., Gunturi, V.R. and Miranda, T.F.D.S. (2019), "Slope stability analysis using recent metaheuristic techniques: a comprehensive survey", SN Appl. Sci., 1(12), 1674. https://doi.org/10.1007/s42452-019-1707-6
- Mishra, M., Gunturi, V.R. and Maity, D. (2020), "Teaching-learning-based optimisation algorithm and its application in capturing critical slip surface in slope stability analysis", Soft Comput., 24(4), 2969-2982. https://doi.org/10.1007/s00500-019-04075-3
- Moayedi, H., Mehrabi, M., Mosallanezhad, M., Rashid, A.S.A. and Pradhan, B. (2019a), "Modification of landslide susceptibility mapping using optimized PSO-ANN technique", Eng. Comput., 35(3), 967-984. https://doi.org/10.1007/s00366-018-0644-0
- Moayedi, H., Osouli, A., Nguyen, H. and Rashid, A.S.A. (2019b), "A novel Harris hawks' optimization and k-fold cross-validation predicting slope stability", Eng. Comput., 37, 369-379. https://doi.org/10.1007/s00366-019-00828-8
- Moayedi, H., Ghareh, S. and Foong, L.K. (2021), "Quick integrative optimizers for minimizing the error of neural computing in pan evaporation modeling", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01277-4
- More, J.J. (1978), Numerical Analysis, Springer, pp. 105-116. https://doi.org/10.1007/BFb0067700
- Nguyen, H., Mehrabi, M., Kalantar, B., Moayedi, H. and Abdullahi, M.A.M. (2019), "Potential of hybrid evolutionary approaches for assessment of geo-hazard landslide susceptibility mapping", Geomat. Natural Hazards Risk, 10(1), 1667-1693. https://doi.org/10.1080/19475705.2019.1607782
- Nguyen, M.S.T., Thai, D.K. and Kim, S.E. (2020), "Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network", Steel Compos. Struct., Int. J., 35(3), 415-437. https://doi.org/10.12989/scs.2020.35.3.415
- Orr, M.J. (1996), "Introduction to radial basis function networks", Technical Report; Center for Cognitive Science, University of Edinburgh, Scotland.
- Oztas, A., Pala, M., Ozbay, E., Kanca, E., Caglar, N. and Bhatti, M.A. (2006), "Predicting the compressive strength and slump of high strength concrete using neural network", Constr. Build. Mater., 20(9), 769-775. https://doi.org/10.1016/j.conbuildmat.2005.01.054
- Perampaladas, K., Stoltz, J.A. and Andrade, M.C.B. (2008), "Mated redback spider females re-advertise receptivity months after mating", Ethology, 114(6), 589-598. https://doi.org/10.1111/j.1439-0310.2008.01513.x
- Premkumar, K., Vishnupriya, M., Sudhakar Babu, T., Manikandan, B.V., Thamizhselvan, T., Nazar Ali, A., Islam, R., Kouzani, A.Z. and Mahmud, P. (2020), "Black Widow Optimization-Based Optimal PI-Controlled Wind Turbine Emulator", Sustain., 12(24), 10357. https://doi.org/10.3390/su122410357
- Qi, C. and Tang, X. (2018), "Slope stability prediction using integrated metaheuristic and machine learning approaches: a comparative study", Comput. Indust. Eng., 118, 112-122. https://doi.org/10.1016/j.cie.2018.02.028
- Qian, Z.G., Li, A.J., Lyamin, A.V. and Wang, C.C. (2017), "Parametric studies of disturbed rock slope stability based on finite element limit analysis methods", Comput. Geotech., 81, 155-166. https://doi.org/10.1016/j.compgeo.2016.08.012
- Qiao, W., Wang, Y., Zhang, J., Tian, W., Tian, Y. and Yang, Q. (2021), "An innovative coupled model in view of wavelet transform for predicting short-term PM10 concentration", J. Environ. Manag., 289, 112438. https://doi.org/10.1016/j.jenvman.2021.112438
- Sari, P.A., Suhatril, M., Osman, N., Mu'azu, M.A., Katebi, J., Abavisani, A., Ghaffari, N., Sadeghi Chahnasir, E., Wakil, K., Khorami, M. and Petkovic, D. (2019), "Developing a hybrid adoptive neuro-fuzzy inference system in predicting safety of factors of slopes subjected to surface eco-protection techniques", Eng. Comput., 36, 1347-1354. https://doi.org/10.1007/s00366-019-00768-3
- Seyedashraf, O., Mehrabi, M. and Akhtari, A.A. (2018), "Novel approach for dam break flow modeling using computational intelligence", J. Hydrol., 559, 1028-1038. https://doi.org/10.1016/j.jhydrol.2018.03.001
- Shan, W., Qiao, Z., Heidari, A.A., Chen, H., Turabieh, H. and Teng, Y. (2020), "Double adaptive weights for stabilization of moth flame optimizer: Balance analysis, engineering cases, and medical diagnosis", Knowled.-Based Syst., 214, 106728. https://doi.org/10.1016/j.knosys.2020.106728
- Shen, L., Chen, H., Yu, Z., Kang, W., Zhang, B., Li, H., Yang, B. and Liu, D. (2016), "Evolving support vector machines using fruit fly optimization for medical data classification", Knowled.- Based Syst., 96, 61-75. https://doi.org/10.1016/j.knosys.2016.01.002
- Singh, J., Banka, H. and Verma, A.K. (2019), "A BBO-based algorithm for slope stability analysis by locating critical failure surface", Neural Comput. Applicat., 31(10), 6401-6418. https://doi.org/10.1007/s00521-018-3418-0
- Specht, D.F. (1991), "A general regression neural network", IEEE Transact. Neural Networks, 2(6), 568-576. https://doi.org/10.1109/72.97934
- Sun, M., Hou, B., Wang, S., Zhao, Q., Zhang, L., Song, L. and Zhang, H. (2021), "Effects of NaClO shock on MBR performance under continuous operating conditions", Environ. Sci.: Water Res. Technol., 7(2), 396-404. https://doi.org/10.1039/D0EW00760A
- Tien Bui, D., Moayedi, H., Gor, M., Jaafari, A. and Foong, L.K. (2019), "Predicting slope stability failure through machine learning paradigms", ISPRS Int. J. Geo-Info., 8(9), 395. https://doi.org/10.3390/ijgi8090395
- Tu, J., Chen, H., Liu, J., Heidari, A.A., Zhang, X., Wang, M., Ruby, R. and Pham, Q.V. (2021), "Evolutionary biogeography-based whale optimization methods with communication structure: Towards measuring the balance", Knowled.-Based Syst., 212, 106642. https://doi.org/10.1016/j.knosys.2020.106642
- Wang, M. and Chen, H. (2020), "Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis", Appl. Soft Comput., 88, 105946. https://doi.org/10.1016/j.asoc.2019.105946
- Wang, M., Chen, H., Yang, B., Zhao, X., Hu, L., Cai, Z., Huang, H. and Tong, C. (2017), "Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses", Neurocomput., 267, 69-84. https://doi.org/10.1016/j.neucom.2017.04.060
- Wang, H., Moayedi, H. and Kok Foong, L. (2020), "Genetic algorithm hybridized with multilayer perceptron to have an economical slope stability design", Eng. Comput., 37, 3067-3078. https://doi.org/10.1007/s00366-020-00957-5
- Xia, J., Chen, H., Li, Q., Zhou, M., Chen, L., Cai, Z., Fang, Y. and Zhou, H. (2017), "Ultrasound-based differentiation of malignant and benign thyroid Nodules: An extreme learning machine approach", Comput. Methods Programs Biomed., 147, 37-49. https://doi.org/10.1016/j.cmpb.2017.06.005
- Xu, X. and Chen, H.L. (2014), "Adaptive computational chemotaxis based on field in bacterial foraging optimization", Soft Comput., 18(4), 797-807. https://doi.org/10.1007/s00500-013-1089-4
- Xu, Y., Chen, H., Luo, J., Zhang, Q., Jiao, S. and Zhang, X. (2019), "Enhanced Moth-flame optimizer with mutation strategy for global optimization", Info. Sci., 492, 181-203. https://doi.org/10.1016/j.ins.2019.04.022
- Yang, Y., Li, Y., Yao, J., Iglauer, S., Luquot, L., Zhang, K., Sun, H., Zhang, L., Song, W. and Wang, Z. (2020), "Dynamic pore- scale dissolution by CO2-saturated brine in carbonates: Impact of homogeneous versus fractured versus vuggy pore structure", Water Resour. Res., 56(4), e2019WR026112. https://doi.org/10.1029/2019WR026112
- Yu, H., Li, W., Chen, C., Liang, J., Gui, W., Wang, M. and Chen, H. (2020), "Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism: method and analysis", Eng. Comput., 1-29. https://doi.org/10.1007/s00366-020-01174-w
- Yu, C., Chen, M., Cheng, K., Zhao, X., Ma, C., Kuang, F. and Chen, H. (2021), "SGOA: annealing-behaved grasshopper optimizer for global tasks", Eng. Comput., 1-28. https://doi.org/10.1007/s00366-020-01234-1
- Yuan, C. and Moayedi, H. (2019), "The performance of six neural-evolutionary classification techniques combined with multilayer perception in two-layered cohesive slope stability analysis and failure recognition", Eng. Comput., 36(4), 1705-1714. https://doi.org/10.1007/s00366-019-00791-4
- Zhang, L., Zheng, J., Tian, S., Zhang, H., Guan, X., Zhu, S., Zhang, X., Bai, Y., Xu, P., Zhang, J. and Li, Z. (2020a), "Effects of Al3+ on the microstructure and bioflocculation of anoxic sludge", J. Environ. Sci., 91, 212-221. https://doi.org/10.1016/j.jes.2020.02.010
- Zhang, M., Zhang, L., Tian, S., Zhang, X., Guo, J., Guan, X. and Xu, P. (2020b), "Effects of graphite particles/Fe3+ on the properties of anoxic activated sludge", Chemosphere, 253, 126638. https://doi.org/10.1016/j.chemosphere.2020.126638
- Zhang, W., Hu, Y., Liu, J., Wang, H., Wei, J., Sun, P., Wu, L. and Zheng, H. (2020c), "Progress of ethylene action mechanism and its application on plant type formation in crops", Saudi J. Biol. Sci., 27(6), 1667-1673. https://doi.org/10.1016/j.sjbs.2019.12.038
- Zhang, Y., Liu, R., Heidari, A.A., Wang, X., Chen, Y., Wang, M. and Chen, H. (2020d), "Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis", Neurocomput., 430, 185-212. https://doi.org/10.1016/j.neucom.2020.1010.1038
- Zhang, Y., Liu, R., Wang, X., Chen, H. and Li, C. (2020e), "Boosted binary Harris hawks optimizer and feature selection", Eng. Comput., 37(4), 3741-770. https://doi.org/10.1007/s00366-020-01028-5
- Zhao, C. and Li, J. (2020), "Equilibrium selection under the Bayes-based strategy updating rules", Symmetry, 12(5), 739. https://doi.org/10.3390/sym12050739
- Zhao, X., Li, D., Yang, B., Ma, C., Zhu, Y. and Chen, H. (2014), "Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton", Appl. Soft Comput., 24, 585-596. https://doi.org/10.1016/j.asoc.2014.07.024
- Zhao, X., Zhang, X., Cai, Z., Tian, X., Wang, X., Huang, Y., Chen, H. and Hu, L. (2019), "Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients", Computat. Biol. Chemi., 78, 481-490. https://doi.org/10.1016/j.compbiolchem.2018.11.017
- Zhao, D., Liu, L., Yu, F., Heidari, A.A., Wang, M., Liang, G., Muhammad, K. and Chen, H. (2020a), "Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy", Knowled.-Based Syst., 216, 106510. https://doi.org/10.1016/j.knosys.2020.106510
- Zhao, X., Gu, B., Gao, F. and Chen, S. (2020b), "Matching model of energy supply and demand of the integrated energy system in coastal areas", J. Coastal Res., 103(SI), 983-989. https://doi.org/10.2112/SI103-205.1
- Zheng, J., Zhang, C. and Li, A. (2020), "Experimental investigation on the mechanical properties of curved metallic plate dampers", Appl. Sci., 10(1), 269. https://doi.org/10.3390/app10010269
- Zhou, J., Li, E., Yang, S., Wang, M., Shi, X., Yao, S. and Mitri, H.S. (2019), "Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories", Safety Sci., 118, 505-518. https://doi.org/10.1016/j.ssci.2019.05.046
- Zuo, C., Chen, Q., Tian, L., Waller, L. and Asundi, A. (2015), "Transport of intensity phase retrieval and computational imaging for partially coherent fields: The phase space perspective", Optics Lasers Eng., 71, 20-32. https://doi.org/10.1016/j.optlaseng.2015.03.006
- Zuo, C., Sun, J., Li, J., Zhang, J., Asundi, A. and Chen, Q. (2017), "High-resolution transport-of-intensity quantitative phase microscopy with annular illumination", Scientific Reports, 7(1), 1-22. https://doi.org/10.1038/s41598-017-06837-1
- Zuo, X., Dong, M., Gao, F. and Tian, S. (2020), "The modeling of the electric heating and cooling system of the integrated energy system in the coastal area", J. Coast. Res., 103(SI), 1022-1029. https://doi.org/10.2112/SI103-213.1