DOI QR코드

DOI QR Code

Slope stability analysis using black widow optimization hybridized with artificial neural network

  • Hu, Huanlong (Shenzhen Expressway Engineering Testing Co., Ltd.) ;
  • Gor, Mesut (Firat University, Engineering Faculty, Civil Engineering Department, Division of Geotechnical Engineering) ;
  • Moayedi, Hossein (Institute of Research and Development, Duy Tan University) ;
  • Osouli, Abdolreza (Civil Engineering Department, Southern Illinois University) ;
  • Foong, Loke Kok (Institute of Research and Development, Duy Tan University)
  • Received : 2021.03.25
  • Accepted : 2021.12.30
  • Published : 2022.04.25

Abstract

A novel metaheuristic search method, namely black widow optimization (BWO) is employed to increase the accuracy of slope stability analysis. The BWO is a recently-developed optimizer that supervises the training of an artificial neural network (ANN) for predicting the factor of safety (FOS) of a single-layer cohesive soil slope. The designed slope bears a loaded foundation in different distances from the crest. A sensitivity analysis is conducted based on the number of active individuals in the BWO algorithm, and it was shown that the best performance is acquired for the population size of 40. Evaluation of the results revealed that the capability of the ANN was significantly enhanced by applying the BWO. In this sense, the learning root mean square error fell down by 23.34%. Also, the correlation between the testing data rose from 0.9573 to 0.9737. Therefore, the postposed BWO-ANN can be promisingly used for the early prediction of FOS in real-world projects.

Keywords

References

  1. Ahour, M., Hataf, N. and Azar, E. (2019), "A mathematical model based on artificial neural networks to predict the stability of rock slopes using the generalized Hoek-Brown failure criterion", Geotech. Geol. Eng., 38(1), 587-604. https://doi.org/10.1007/s10706-019-01049-y
  2. Alam, Z., Zhang, C. and Samali, B. (2020), "Influence of seismic incident angle on response uncertainty and structural performance of tall asymmetric structure", Struct. Des. Tall Special Build., 29(12), e1750. https://doi.org/10.1002/tal.1750
  3. Azarafza, M., Nanehkaran, Y.A., Rajabion, L., Akgun, H., Rahnamarad, J., Derakhshani, R. and Raoof, A. (2020), "Application of the modified Q-slope classification system for sedimentary rock slope stability assessment in Iran", Eng. Geol., 264, 105349. https://doi.org/10.1016/j.enggeo.2019.105349
  4. Berning, A.W., Gadd, R.D., Sweeney, K., MacDonald, L., Eng, R.Y., Hess, Z.L. and Pruitt, J.N. (2012), "Sexual cannibalism is associated with female behavioural type, hunger state and increased hatching success", Animal behaviour, 84(3), 715-721. https://doi.org/10.1016/j.anbehav.2012.06.030
  5. Bhattacharjya, R.K. (2020), Nature-Inspired Methods for Metaheuristics Optimization, Springer, pp. 323-334. https://doi.org/10.1007/978-3-030-26458-1_18
  6. Boga, A.R., Ozturk, M. and Topcu, I.B. (2013), "Using ANN and ANFIS to predict the mechanical and chloride permeability properties of concrete containing GGBFS and CNI", Compos. Part B: Eng., 45(1), 688-696. https://doi.org/10.1016/j.compositesb.2012.05.054
  7. Chaabene, W.B., Flah, M. and Nehdi, M.L. (2020), "Machine learning prediction of mechanical properties of concrete: Critical review", Constr. Build. Mater., 260, 119889. https://doi.org/10.1016/j.conbuildmat.2020.119889
  8. Chen, H.L., Wang, G., Ma, C., Cai, Z.N., Liu, W.B. and Wang, S.J. (2016), "An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson's disease", Neurocomputing, 184, 131-144. https://doi.org/10.1016/j.neucom.2015.07.138
  9. Chen, H., Heidari, A.A., Chen, H., Wang, M., Pan, Z. and Gandomi, A.H. (2020), "Multi-population differential evolution-assisted Harris hawks optimization: Framework and case studies", Future Generat. Comput. Syst., 111, 175-198. https://doi.org/10.1016/j.future.2020.04.008
  10. Chithra, S., Kumar, S.S., Chinnaraju, K. and Ashmita, F.A. (2016), "A comparative study on the compressive strength prediction models for High Performance Concrete containing nano silica and copper slag using regression analysis and Artificial Neural Networks", Constr. Build. Mater., 114, 528-535. https://doi.org/10.1016/j.conbuildmat.2016.03.214
  11. DeRousseau, M.A., Kasprzyk, J.R. and Srubar Iii, W.V. (2018), "Computational design optimization of concrete mixtures: A review", Cement Concrete Res., 109, 42-53. https://doi.org/10.1016/j.cemconres.2018.04.007
  12. Dyson, A.P. and Tolooiyan, A. (2020), "Comparative approaches to probabilistic finite element methods for slope stability analysis", Simul. Modell. Pract. Theory, 100, 102061. https://doi.org/10.1016/j.simpat.2019.102061
  13. Fattahi, H. and Zandy Ilghani, N. (2020), "Slope stability analysis using Bayesian Markov chain Monte Carlo method", Geotech. Geol. Eng., 1-10. https://doi.org/10.1007/s10706-019-01172-w
  14. Gao, N., Wang, B., Lu, K. and Hou, H. (2021), "Complex band structure and evanescent Bloch wave propagation of periodic nested acoustic black hole phononic structure", Appl. Acoust., 177, 107906. https://doi.org/10.1016/j.apacoust.2020.107906
  15. Han, C., Zhang, B., Chen, H., Wei, Z. and Liu, Y. (2019), "Spatially distributed crop model based on remote sensing", Agricul. Water Manag., 218, 165-173. https://doi.org/10.1016/j.agwat.2019.03.035
  16. Hayyolalam, V. and Kazem, A.A.P. (2020), "Black Widow Optimization Algorithm: A novel meta-heuristic approach for solving engineering optimization problems", Eng. Applicat. Artif. Intell., 87, 103249. https://doi.org/10.1016/j.engappai.2019.103249
  17. Hecht-Nielsen, R. (1992), Neural Networks for Perception, Elsevier, pp. 65-93. https://doi.org/10.1016/B978-0-12-741252-8.50010-8
  18. Himanshu, N., Kumar, V., Burman, A., Maity, D. and Gordan, B. (2020), "Grey wolf optimization approach for searching critical failure surface in soil slopes", Eng. Comput., 37, 2059-72. https://doi.org/10.1007/s00366-019-00927-6
  19. Hoang, N.D. and Pham, A.D. (2016), "Hybrid artificial intelligence approach based on metaheuristic and machine learning for slope stability assessment: A multinational data analysis", Expert Syst. Applicat., 46, 60-68. https://doi.org/10.1016/j.eswa.2015.10.020
  20. Hong, X.C., Wang, G.Y., Liu, J., Song, L. and Wu, E.T. (2021), "Modeling the impact of soundscape drivers on perceived birdsongs in urban forests", J. Cleaner Product., 292, 125315. https://doi.org/10.1016/j.jclepro.2020.125315
  21. Hornik, K. (1991), "Approximation capabilities of multilayer feedforward networks", Neural Networks, 4(2), 251-257. https://doi.org/10.1016/0893-6080(91)90009-T
  22. Houssein, E.H., Helmy, B.E.D., Oliva, D., Elngar, A.A. and Shaban, H. (2020), "A novel black widow optimization algorithm for multilevel thresholding image segmentation", Expert Syst. Applicat., 167, 114159. https://doi.org/10.1016/j.eswa.2020.114159
  23. Hu, L., Hong, G., Ma, J., Wang, X. and Chen, H. (2015), "An efficient machine learning approach for diagnosis of paraquat-poisoned patients", Comput. Biol. Med., 59, 116-124. https://doi.org/10.1016/j.compbiomed.2015.02.003
  24. Hu, J., Chen, H., Heidari, A.A., Wang, M., Zhang, X., Chen, Y. and Pan, Z. (2020), "Orthogonal learning covariance matrix for defects of grey wolf optimizer: Insights, balance, diversity, and feature selection", Knowledge-Based Systems, 213, 106684. https://doi.org/10.1016/j.knosys.2020.106684
  25. Kang, F., Xu, B., Li, J. and Zhao, S. (2017), "Slope stability evaluation using Gaussian processes with various covariance functions", Appl. Soft Comput., 60, 387-396. https://doi.org/10.1016/0893-6080(91)90009-T
  26. Khorasani, E., Amini, M., Hossaini, M.F. and Medley, E. (2019), "Evaluating the effects of the inclinations of rock blocks on the stability of bimrock slopes", Geomech. Eng., Int. J., 17(3), 281-287. https://doi.org/10.12989/gae.2019.17.3.281
  27. Kim, S.E., Vu, Q.V., Papazafeiropoulos, G., Kong, Z. and Truong, V.H. (2020), "Comparison of machine learning algorithms for regression and classification of ultimate load-carrying capacity of steel frames", Steel Compos. Struct., Int. J., 37(2), 193-209. https://doi.org/10.12989/scs.2020.37.2.193
  28. Krabbenhoft, K., Lyamin, A. and Krabbenhoft, J. (2015), "Optum Computational Engineering (Optum G2)", Available on: www.optumce.com
  29. Li, D.Q., Xiao, T., Cao, Z.J., Phoon, K.K. and Zhou, C.B. (2016), "Efficient and consistent reliability analysis of soil slope stability using both limit equilibrium analysis and finite element analysis", Appl. Mathe. Modell., 40(9-10), 5216-5229. https://doi.org/10.1016/j.apm.2015.11.044
  30. Li, C., Hou, L., Sharma, B.Y., Li, H., Chen, C., Li, Y., Zhao, X., Huang, H., Cai, Z. and Chen, H. (2018), "Developing a new intelligent system for the diagnosis of tuberculous pleural effusion", Comput. Methods Programs Biomed., 153, 211-225. https://doi.org/10.1016/j.cmpb.2017.10.022
  31. Lin, Y., Zhou, K. and Li, J. (2018), "Prediction of slope stability using four supervised learning methods", IEEE Access, 6, 31169-31179. https://doi.org/10.1109/access.2018.2843787
  32. Liu, J., Liu, Y. and Wang, X. (2020a), "An environmental assessment model of construction and demolition waste based on system dynamics: a case study in Guangzhou", Environ. Sci. Pollut. Res., 27(30), 37237-37259. https://doi.org/10.1007/s11356-019-07107-5
  33. Liu, J., Yi, Y. and Wang, X. (2020b), "Exploring factors influencing construction waste reduction: A structural equation modeling approach", J. Cleaner Product., 276, 123185. https://doi.org/10.1016/j.jclepro.2020.123185
  34. Liu, M., Xue, Z., Zhang, H. and Li, Y. (2021), "Dual-channel membrane capacitive deionization based on asymmetric ion adsorption for continuous water desalination", Electrochem. Commun., 125, 106974. https://doi.org/10.1016/j.elecom.2021.106974
  35. Luo, Z., Bui, X.N., Nguyen, H. and Moayedi, H. (2019), "A novel artificial intelligence technique for analyzing slope stability using PSO-CA model", Eng. Comput, 1-12. https://doi.org/10.1007/s00366-019-00839-5
  36. McCulloch, W.S. and Pitts, W. (1943), "A logical calculus of the ideas immanent in nervous activity", Bull. Mathe. Biophys., 5(4), 115-133. https://doi.org/10.1007/BF02478259
  37. Mishra, M., Gunturi, V.R. and Miranda, T.F.D.S. (2019), "Slope stability analysis using recent metaheuristic techniques: a comprehensive survey", SN Appl. Sci., 1(12), 1674. https://doi.org/10.1007/s42452-019-1707-6
  38. Mishra, M., Gunturi, V.R. and Maity, D. (2020), "Teaching-learning-based optimisation algorithm and its application in capturing critical slip surface in slope stability analysis", Soft Comput., 24(4), 2969-2982. https://doi.org/10.1007/s00500-019-04075-3
  39. Moayedi, H., Mehrabi, M., Mosallanezhad, M., Rashid, A.S.A. and Pradhan, B. (2019a), "Modification of landslide susceptibility mapping using optimized PSO-ANN technique", Eng. Comput., 35(3), 967-984. https://doi.org/10.1007/s00366-018-0644-0
  40. Moayedi, H., Osouli, A., Nguyen, H. and Rashid, A.S.A. (2019b), "A novel Harris hawks' optimization and k-fold cross-validation predicting slope stability", Eng. Comput., 37, 369-379. https://doi.org/10.1007/s00366-019-00828-8
  41. Moayedi, H., Ghareh, S. and Foong, L.K. (2021), "Quick integrative optimizers for minimizing the error of neural computing in pan evaporation modeling", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01277-4
  42. More, J.J. (1978), Numerical Analysis, Springer, pp. 105-116. https://doi.org/10.1007/BFb0067700
  43. Nguyen, H., Mehrabi, M., Kalantar, B., Moayedi, H. and Abdullahi, M.A.M. (2019), "Potential of hybrid evolutionary approaches for assessment of geo-hazard landslide susceptibility mapping", Geomat. Natural Hazards Risk, 10(1), 1667-1693. https://doi.org/10.1080/19475705.2019.1607782
  44. Nguyen, M.S.T., Thai, D.K. and Kim, S.E. (2020), "Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network", Steel Compos. Struct., Int. J., 35(3), 415-437. https://doi.org/10.12989/scs.2020.35.3.415
  45. Orr, M.J. (1996), "Introduction to radial basis function networks", Technical Report; Center for Cognitive Science, University of Edinburgh, Scotland.
  46. Oztas, A., Pala, M., Ozbay, E., Kanca, E., Caglar, N. and Bhatti, M.A. (2006), "Predicting the compressive strength and slump of high strength concrete using neural network", Constr. Build. Mater., 20(9), 769-775. https://doi.org/10.1016/j.conbuildmat.2005.01.054
  47. Perampaladas, K., Stoltz, J.A. and Andrade, M.C.B. (2008), "Mated redback spider females re-advertise receptivity months after mating", Ethology, 114(6), 589-598. https://doi.org/10.1111/j.1439-0310.2008.01513.x
  48. Premkumar, K., Vishnupriya, M., Sudhakar Babu, T., Manikandan, B.V., Thamizhselvan, T., Nazar Ali, A., Islam, R., Kouzani, A.Z. and Mahmud, P. (2020), "Black Widow Optimization-Based Optimal PI-Controlled Wind Turbine Emulator", Sustain., 12(24), 10357. https://doi.org/10.3390/su122410357
  49. Qi, C. and Tang, X. (2018), "Slope stability prediction using integrated metaheuristic and machine learning approaches: a comparative study", Comput. Indust. Eng., 118, 112-122. https://doi.org/10.1016/j.cie.2018.02.028
  50. Qian, Z.G., Li, A.J., Lyamin, A.V. and Wang, C.C. (2017), "Parametric studies of disturbed rock slope stability based on finite element limit analysis methods", Comput. Geotech., 81, 155-166. https://doi.org/10.1016/j.compgeo.2016.08.012
  51. Qiao, W., Wang, Y., Zhang, J., Tian, W., Tian, Y. and Yang, Q. (2021), "An innovative coupled model in view of wavelet transform for predicting short-term PM10 concentration", J. Environ. Manag., 289, 112438. https://doi.org/10.1016/j.jenvman.2021.112438
  52. Sari, P.A., Suhatril, M., Osman, N., Mu'azu, M.A., Katebi, J., Abavisani, A., Ghaffari, N., Sadeghi Chahnasir, E., Wakil, K., Khorami, M. and Petkovic, D. (2019), "Developing a hybrid adoptive neuro-fuzzy inference system in predicting safety of factors of slopes subjected to surface eco-protection techniques", Eng. Comput., 36, 1347-1354. https://doi.org/10.1007/s00366-019-00768-3
  53. Seyedashraf, O., Mehrabi, M. and Akhtari, A.A. (2018), "Novel approach for dam break flow modeling using computational intelligence", J. Hydrol., 559, 1028-1038. https://doi.org/10.1016/j.jhydrol.2018.03.001
  54. Shan, W., Qiao, Z., Heidari, A.A., Chen, H., Turabieh, H. and Teng, Y. (2020), "Double adaptive weights for stabilization of moth flame optimizer: Balance analysis, engineering cases, and medical diagnosis", Knowled.-Based Syst., 214, 106728. https://doi.org/10.1016/j.knosys.2020.106728
  55. Shen, L., Chen, H., Yu, Z., Kang, W., Zhang, B., Li, H., Yang, B. and Liu, D. (2016), "Evolving support vector machines using fruit fly optimization for medical data classification", Knowled.- Based Syst., 96, 61-75. https://doi.org/10.1016/j.knosys.2016.01.002
  56. Singh, J., Banka, H. and Verma, A.K. (2019), "A BBO-based algorithm for slope stability analysis by locating critical failure surface", Neural Comput. Applicat., 31(10), 6401-6418. https://doi.org/10.1007/s00521-018-3418-0
  57. Specht, D.F. (1991), "A general regression neural network", IEEE Transact. Neural Networks, 2(6), 568-576. https://doi.org/10.1109/72.97934
  58. Sun, M., Hou, B., Wang, S., Zhao, Q., Zhang, L., Song, L. and Zhang, H. (2021), "Effects of NaClO shock on MBR performance under continuous operating conditions", Environ. Sci.: Water Res. Technol., 7(2), 396-404. https://doi.org/10.1039/D0EW00760A
  59. Tien Bui, D., Moayedi, H., Gor, M., Jaafari, A. and Foong, L.K. (2019), "Predicting slope stability failure through machine learning paradigms", ISPRS Int. J. Geo-Info., 8(9), 395. https://doi.org/10.3390/ijgi8090395
  60. Tu, J., Chen, H., Liu, J., Heidari, A.A., Zhang, X., Wang, M., Ruby, R. and Pham, Q.V. (2021), "Evolutionary biogeography-based whale optimization methods with communication structure: Towards measuring the balance", Knowled.-Based Syst., 212, 106642. https://doi.org/10.1016/j.knosys.2020.106642
  61. Wang, M. and Chen, H. (2020), "Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis", Appl. Soft Comput., 88, 105946. https://doi.org/10.1016/j.asoc.2019.105946
  62. Wang, M., Chen, H., Yang, B., Zhao, X., Hu, L., Cai, Z., Huang, H. and Tong, C. (2017), "Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses", Neurocomput., 267, 69-84. https://doi.org/10.1016/j.neucom.2017.04.060
  63. Wang, H., Moayedi, H. and Kok Foong, L. (2020), "Genetic algorithm hybridized with multilayer perceptron to have an economical slope stability design", Eng. Comput., 37, 3067-3078. https://doi.org/10.1007/s00366-020-00957-5
  64. Xia, J., Chen, H., Li, Q., Zhou, M., Chen, L., Cai, Z., Fang, Y. and Zhou, H. (2017), "Ultrasound-based differentiation of malignant and benign thyroid Nodules: An extreme learning machine approach", Comput. Methods Programs Biomed., 147, 37-49. https://doi.org/10.1016/j.cmpb.2017.06.005
  65. Xu, X. and Chen, H.L. (2014), "Adaptive computational chemotaxis based on field in bacterial foraging optimization", Soft Comput., 18(4), 797-807. https://doi.org/10.1007/s00500-013-1089-4
  66. Xu, Y., Chen, H., Luo, J., Zhang, Q., Jiao, S. and Zhang, X. (2019), "Enhanced Moth-flame optimizer with mutation strategy for global optimization", Info. Sci., 492, 181-203. https://doi.org/10.1016/j.ins.2019.04.022
  67. Yang, Y., Li, Y., Yao, J., Iglauer, S., Luquot, L., Zhang, K., Sun, H., Zhang, L., Song, W. and Wang, Z. (2020), "Dynamic pore- scale dissolution by CO2-saturated brine in carbonates: Impact of homogeneous versus fractured versus vuggy pore structure", Water Resour. Res., 56(4), e2019WR026112. https://doi.org/10.1029/2019WR026112
  68. Yu, H., Li, W., Chen, C., Liang, J., Gui, W., Wang, M. and Chen, H. (2020), "Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism: method and analysis", Eng. Comput., 1-29. https://doi.org/10.1007/s00366-020-01174-w
  69. Yu, C., Chen, M., Cheng, K., Zhao, X., Ma, C., Kuang, F. and Chen, H. (2021), "SGOA: annealing-behaved grasshopper optimizer for global tasks", Eng. Comput., 1-28. https://doi.org/10.1007/s00366-020-01234-1
  70. Yuan, C. and Moayedi, H. (2019), "The performance of six neural-evolutionary classification techniques combined with multilayer perception in two-layered cohesive slope stability analysis and failure recognition", Eng. Comput., 36(4), 1705-1714. https://doi.org/10.1007/s00366-019-00791-4
  71. Zhang, L., Zheng, J., Tian, S., Zhang, H., Guan, X., Zhu, S., Zhang, X., Bai, Y., Xu, P., Zhang, J. and Li, Z. (2020a), "Effects of Al3+ on the microstructure and bioflocculation of anoxic sludge", J. Environ. Sci., 91, 212-221. https://doi.org/10.1016/j.jes.2020.02.010
  72. Zhang, M., Zhang, L., Tian, S., Zhang, X., Guo, J., Guan, X. and Xu, P. (2020b), "Effects of graphite particles/Fe3+ on the properties of anoxic activated sludge", Chemosphere, 253, 126638. https://doi.org/10.1016/j.chemosphere.2020.126638
  73. Zhang, W., Hu, Y., Liu, J., Wang, H., Wei, J., Sun, P., Wu, L. and Zheng, H. (2020c), "Progress of ethylene action mechanism and its application on plant type formation in crops", Saudi J. Biol. Sci., 27(6), 1667-1673. https://doi.org/10.1016/j.sjbs.2019.12.038
  74. Zhang, Y., Liu, R., Heidari, A.A., Wang, X., Chen, Y., Wang, M. and Chen, H. (2020d), "Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis", Neurocomput., 430, 185-212. https://doi.org/10.1016/j.neucom.2020.1010.1038
  75. Zhang, Y., Liu, R., Wang, X., Chen, H. and Li, C. (2020e), "Boosted binary Harris hawks optimizer and feature selection", Eng. Comput., 37(4), 3741-770. https://doi.org/10.1007/s00366-020-01028-5
  76. Zhao, C. and Li, J. (2020), "Equilibrium selection under the Bayes-based strategy updating rules", Symmetry, 12(5), 739. https://doi.org/10.3390/sym12050739
  77. Zhao, X., Li, D., Yang, B., Ma, C., Zhu, Y. and Chen, H. (2014), "Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton", Appl. Soft Comput., 24, 585-596. https://doi.org/10.1016/j.asoc.2014.07.024
  78. Zhao, X., Zhang, X., Cai, Z., Tian, X., Wang, X., Huang, Y., Chen, H. and Hu, L. (2019), "Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients", Computat. Biol. Chemi., 78, 481-490. https://doi.org/10.1016/j.compbiolchem.2018.11.017
  79. Zhao, D., Liu, L., Yu, F., Heidari, A.A., Wang, M., Liang, G., Muhammad, K. and Chen, H. (2020a), "Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy", Knowled.-Based Syst., 216, 106510. https://doi.org/10.1016/j.knosys.2020.106510
  80. Zhao, X., Gu, B., Gao, F. and Chen, S. (2020b), "Matching model of energy supply and demand of the integrated energy system in coastal areas", J. Coastal Res., 103(SI), 983-989. https://doi.org/10.2112/SI103-205.1
  81. Zheng, J., Zhang, C. and Li, A. (2020), "Experimental investigation on the mechanical properties of curved metallic plate dampers", Appl. Sci., 10(1), 269. https://doi.org/10.3390/app10010269
  82. Zhou, J., Li, E., Yang, S., Wang, M., Shi, X., Yao, S. and Mitri, H.S. (2019), "Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories", Safety Sci., 118, 505-518. https://doi.org/10.1016/j.ssci.2019.05.046
  83. Zuo, C., Chen, Q., Tian, L., Waller, L. and Asundi, A. (2015), "Transport of intensity phase retrieval and computational imaging for partially coherent fields: The phase space perspective", Optics Lasers Eng., 71, 20-32. https://doi.org/10.1016/j.optlaseng.2015.03.006
  84. Zuo, C., Sun, J., Li, J., Zhang, J., Asundi, A. and Chen, Q. (2017), "High-resolution transport-of-intensity quantitative phase microscopy with annular illumination", Scientific Reports, 7(1), 1-22. https://doi.org/10.1038/s41598-017-06837-1
  85. Zuo, X., Dong, M., Gao, F. and Tian, S. (2020), "The modeling of the electric heating and cooling system of the integrated energy system in the coastal area", J. Coast. Res., 103(SI), 1022-1029. https://doi.org/10.2112/SI103-213.1