Acknowledgement
이 논문은 2021년도 광운대학교 우수연구자 지원 사업에 의해 연구되었음.
References
- Gyeonggi Research Institute(GRI), Growing Pains of Car Sharing Services, Beyond Conflicts and Regulations to the Future Gyeonggi Research Institute(GRI) No.440, 2020 Nov. 15. https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE10541172
- Korea Consumer Agency, Survey Car sharing Terms of Use and Advertisements, 1-79, 2017 May. https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE07456356
- Developing Car Damage Detection Model using Semantic Segmentation. (accessed 2020. Feb. 13) doi: https://tech.socarcorp.kr/data/2020/02/13/car-damage-segmentation-model.html
- Q. Zhang, X. Chang and S. Bian Bian, "Vehicle-Damage-Detection Segmentation Algorithm Based on Improved Mask RCNN," IEEE Access, Vol.8, pp.6997-7004, Jan. 06, 2020. doi: https://doi.org/10.1109/ACCESS.2020.2964055
- U. Waqas, N. Akram, S. Kim, D. Lee and J. Jeo, "Vehicle Damage Classification and Fraudulent Image Detection Including Moire Effect Using Deep Learning", 2020 IEEE Canadian Conference on Electrical and Computer Engineering, Aug. 30 - Sep. 2 2020. (accessed Nov. 19, 2020) doi: https://doi.org/10.1109/ CCECE47787.2020.9255806
- X. Zhu, S. Liu, P. Zhang and Y. Duan, "A Unified Framework of Intelligent Vehicle Damage Assessment based on Computer Vision Technology," 2019 IEEE 2nd International Conference on Automation, Nov. 22-24 2019. doi: https://doi.org/10.1109/AUTEEE48671.2019.9033150
- H. S. Malik, M. Dwivedi, S. N. Omakar, S. R. Samal, A. Rathi, E. B. Monis, B. Khanna and A. Tiwari, "Deep Learning Based Car Damage Classification and Detection," Advances in Artificial Intelligence and Data Engineering, Vol.1133, pp 207-221, Aug 2020. https://easychair.org/publications/preprint/RlQ2
- A. Artusi, F. Banterle, and D. Chetverikov, "A Survey of Specularity Removal Methods," COMPUTER GRAPHICS forum, Vol.30, No.8, pp. 2208-2230, 2011. doi: https://doi.org/10.1111/j.1467-8659.2011.01971.x
- C. G. P. Suescun, J. O. P. Arenas and R. J. Moreno, "Detection of Scratches on Cars by Means of CNN and R-CNN," International Journal on Advanced Science, Engineering and Information Technology, Vol.9, No.3, pp.745-752, 2019. doi: http://dx.doi.org/10.18517/ijaseit.9.3.6470
- R. C. Daudt, R. L. Saux, and A. Boulch, "Fully convolutional siamese networks for change detection," Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 4063-4067, 2018. (accessed Sep. 6 2018) doi: 10.1109/ICIP.2018.8451652
- M. E. A. Larabi, S. Chaib, K. Bakhtj, and M. S. Karoui, "Transfer Learning for Changes Detection in Optical Remote Sensing Imagery," Proceedings of the IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, pp.1582-1585, 2019. doi: https://doi.org/10.1109/IGARSS.2019.8900296
- H. Chen, and S. Zhenwei, "A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection," Remote Sensing, Vol.12, No.10, pp.1-23, May 2020. doi: https://doi.org/10.3390/rs12101662
- G. Hwang, W.J. Lee, and S.J. Oh, "Change Attention based Dense Siamese Network for Remote Sensing Change Detection," Journal of Broadcast Engineering, Vol.26, No.1, pp.14-25, Jan 2021. doi: https://doi.org/10.5909/JBE.2021.26.1.14
- R. T. Collins, A. J. Lipton and T. Kanade, "Introduction to the special section on video surveillance," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. 8, pp. 745-746, Aug 2000. doi: https://doi.org/10.1109/TPAMI.2000.868676
- C. Stauffer and W. E. L. Grimson, "Learning patterns of activity using real-time tracking," in IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. 8, pp. 747-757, Aug 2000. doi: https://doi.org/10.1109/34.868677
- M. Bosc, F. Heitz, J. P. Armspach, I. Namer, D. Gounot and L. Rumbach, "Automatic change detection in multimodal serial MRI: Application to multiple sclerosis lesion evolution," Neuroimage, Vol. 20, pp. 643-656, 2003. doi: https://doi.org/10.1016/s1053-8119(03)00406-3
- D. Rey, G. Subsol, H. Delingette and N. Ayache, "Automatic detection and segmentation of evolving processes in 3D medical images: Application to multiple sclerosis," Med. Image Anal, Vol.6, No.2, pp.163-179, Jun 2002. doi: https://doi.org/10.1016/s1361-8415(02)00056-7
- D. R. Edgington, K. A. Salamy, M. Risi, R. E. Sherlock, D. Walther and C. Koch, "Automated event detection in underwater video," Oceans 2003. Celebrating the Past ... Teaming Toward the Future (IEEE Cat. No.03CH37492), Vol.5, pp. 2749-2753, 2003. doi: https://doi.org/10.1109/OCEANS.2003.178344
- K. Lebart, E. Trucco and D. M. Lane, "Real-time automatic sea-floor change detection from video," Oceans Conference Record, Vol. 2, No. 7, pp. 1337-1343, 2000. doi: https://doi.org/10.1109/OCEANS.2000.881789
- L. Khelifi and M. Mignotte, "Deep Learning for Change Detection in Remote Sensing Images: Comprehensive Review and Meta-Analysis," IEEE Access, Vol. 8, pp. 126385 -126400. (accessed Jul. 8 2020) doi: https://doi.org/10.1109/ACCESS.2020.3008036
- Y. Liu, C. Pang, Z. Zhan, X. Zhang, and X. Yang, "Building Change Detection for Remote Sensing Images Using a Dual Task Constrained Deep Siamese Convolutional Network Model," arXiv preprint, arXiv:1909.07726, 2019. doi: https://doi.org/10.48550/arXiv.1909.07726
- Y. Zhan, K. Fu, M. Yan, X. Sun, H. Wang and X. Qiu, "Change Detection Based on Deep Siamese Convolutional Network for Optical Aerial Images," IEEE Geoscience and Remote Sensing Letters, Vol.14, Issue: 10, pp.1845-1849, Oct. 2017. doi: https://doi.org/10.1109/LGRS.2017.2738149
- S. A. Shafer, "Using color to separate reflection components", Color Res. Appl. 10, 210-218, 1985. doi: https://doi.org/10.1002/col.5080100409
- K. Yoon, Y. Choi and I.S. Kweon,"Fast Separation of Reflection Components using a Specularity-Invariant Image Representation," 2006 International Conference on Image Processing, Atlanta, Georgia, USA, pp. 973-97, Oct 2006. doi: https://doi.org/10.1109/ICIP.2006.312650
- S. K. Nayar, X. S. Fang, and T. Boult, "Separation of reflection components using color and polarization," International Journal of Computer Vision, Vol. 21, pp.163-186, Feb 1997. doi: https://doi.org/10.1023/A:1007937815113
- R. T. Tan, K. Nishino, and K. Ikeuchi, "Separating reflection components based on chromaticity and noise analysis," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 26, pp.1373-1379, Oct 2004. doi: https://doi.org/10.1109/TPAMI.2004.90
- R. T. Tan and K. Ikeuchi, "Separating reflection components of textured surfaces using a single image," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, Iss.2, pp. 178 -193, Feb 2005. doi: https://doi.org/10.1109/TPAMI.2005.36
- H.L. Shen and Q.Y. Cai, "Simple and efficient method for specularity removal in an image," Virtual Journal for Biomedical Optics, Vol. 4, Iss.7, May. 6 2009. doi: https://doi.org/10.1364/AO.48.002711
- J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu, "Dual attention network for scene segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, California, USA, pp.3146-3154, 2019. doi: https://doi.org/10.48550/arXiv.1809.02983
- C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang and C. Liu, "A Survey on Deep Transfer Learning," Artificial Neural Networks and Machine Learning, pp. 270-279. (accessed Oct 2018) doi:10.1007/978-3-030-01424-7_27
- S. J. Pan and Q. Yang, "A Survey on Transfer Learning," IEEE Transactions on Knowledge and Data Engineering, Vol. 22, Iss.10, pp. 1345-1359, Oct. 2010. doi: https://doi.org/10.1109/TKDE.2009.191
- X. Xu, J. Lin, Y. Tao and X. Wang, "An Improved DenseNet Method Based on Transfer Learning for Fundus Medical Images," 2018 7th International Conference on Digital Home (ICDH), pp. 137-140, Nov. 30 -Dec. 1 2018. doi: https://doi.org/10.1109/ICDH.2018.00033
- J. Yosinski, J. Clune, Y. Bengio and H. Lipson, "How transferable are features in deep neural networks?" Advances in Neural Information Processing Systems, Vol.27, pp.3320-3328, Dec. 2014. doi: https://doi.org/10.48550/arXiv.1411.1792
- A. Asokan, and J. Anitha, "Change detection techniques for remote sensing applications: a survey." Earth Science Informatics, Vol.12, No.2, pp.143-160, March 2019. doi: https://doi.org/10.1007/s12145-019-00380-5
- L. Richard, and G. G. Koch. "The Measurement of Observer Agreement for Categorical Data." Wiley, International Biometric Society, Vol. 33, No. 1, pp. 159-74, 1977. doi: https://doi.org/10.2307/2529310
- S. Wang, D. Quan, X. Liang, M. Ning, Y. Guo and L. Jiao, "A deep learning framework for remote sensing image registration". ISPRS Journal of Photogrammetry and Remote Sensing, Vol.145, pp.148-164, 2018. doi: http://dx.doi.org/10.1016/j.isprsjprs.2017.12.012
- F. Wang and D.M.J. Tax. "Survey on the attention based RNN model and its applications in computer vision." arXiv preprint arXiv: 1601.06823, 2016. doi: https://doi.org/10.48550/arXiv.1601.06823