DOI QR코드

DOI QR Code

Preparation and Application of Rehmannia Glutinosa Extract Incorporated Functional Chitosan Based Biomaterials

지황 추출물 첨가 chitosan 기반 기능성 바이오 소재 제조 및 응용

  • Lee, Si-Yeon (Department of Chemical and Biomolecular Engineering, Chonnam National University) ;
  • Kim, Kyeong-Jung (Department of Chemical and Biomolecular Engineering, Chonnam National University) ;
  • Kim, Youn-Sop (Department of Chemical and Biomolecular Engineering, Chonnam National University) ;
  • Yoon, Soon-Do (Department of Chemical and Biomolecular Engineering, Chonnam National University)
  • 이시연 (전남대학교 화공생명공학과) ;
  • 김경중 (전남대학교 화공생명공학과) ;
  • 김윤섭 (전남대학교 화공생명공학과) ;
  • 윤순도 (전남대학교 화공생명공학과)
  • Received : 2022.03.02
  • Accepted : 2022.03.16
  • Published : 2022.04.10

Abstract

The main objective of this work is to prepare Rehmannia glutinosa extract (RE) incorporated functional chitosan (CH) based biomaterials and evaluate their physical properties, RE release properties, inhibitory effect of melanogenesis, and antioxidant and elastase inhibitory activities. RE incorporated CH based biomaterials were synthesized by a casting method and UV curing process. The surface and cross sections of prepared biomaterials were characterized by a field emission scanning electron microscope (FE-SEM). The physical properties such as tensile strength and elongation at break were also investigated. To apply the transdermal drug delivery system, RE release properties were examined with pH 4.5, 5.5, and 6.5 buffer solutions and artificial skin test at 36.5 ℃. Results indicated that RE release of RE incorporated biomaterials with/without the addition of plasticizers [glycerol (GL) and citric acid (CA)] at pH 6.5 was about 1.10 times higher than that of at pH 4.5. In addition, results of the artificial skin test verified that RE was released constantly for 6 h. To verify the applicability of the prepared biomaterials, tyrosinase, 2,2-diphenyl-1-picrylhydrazyl (DPPH), and elastase assays were investigated. Results indicated that RE incorporated biomaterials added CA exhibited tyrosinase activation, DPPH radical scavenging activity rate, and elastase activation of 45.12, 89.40, and 59.94%, respectively.

본 연구에서는 지황 추출물[Rehmannia glutinosa extract (RE)]이 함유된 chitosan (CH) 기반 바이오 소재를 제조하고, 물리·화학적 특성, RE 방출 특성, 멜라닌 합성 억제 효과, 항산화 효과, elastase 억제 효과를 조사하였다. RE 함유 CH기반 바이오 소재는 casting method와 UV 경화 공정을 통해 제조되었다. 제조된 바이오 소재의 표면 특성은 FE-SEM으로 분석하였고, 물리적 특성은 인장강도, 신축률을 통하여 조사하였다. 경피 약물 전달 시스템을 적용하기 위해 36.5 ℃에서 pH 4.5, pH 5.5, pH 6.5 용액에서와 인공피부를 이용해 제조된 바이오 소재에서 RE의 방출 특성을 조사하였으며, 그 결과, pH 6.5에서 가소제를 첨가하지 않은 바이오 소재와 가소제[glycerol (GL)와 citric acid (CA)]를 첨가하여 제조한 RE 함유 바이오 소재에서 RE의 방출이 pH 4.5에서 보다 약 1.10배 빠르게 일어남을 알 수 있었다. 또한, 인공 피부에서 RE의 방출은 약 6 h 동안 지속적으로 방출됨을 확인하였다. Tyrosinase assay, 2,2-diphenyl-1-picrylhydrazyl(DPPH) assay, elastase assay를 통해 기능성을 평가하였으며, 가소제로 CA를 첨가하고 RE가 함유된 바이오 소재에서 각각 45.12%의 tyrosinase 활성율, 89.40%의 DPPH 라디칼 소거능, 59.94%의 elastase 활성율을 나타내었다.

Keywords

Acknowledgement

이 논문은 2019년 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(Grant No. NRF-2019R1I1A3A01061508)에 의해 수행하였음.

References

  1. L. J. R. Foster, S. Ho, J. Hook, M. Basuki, and H. Marcal, Chitosan as a Biomaterial: Influence of degree of deacetylation on its physiochemical, material and biological properties, Plos One, 10, e0135153 (2015). https://doi.org/10.1371/journal.pone.0135153
  2. K. Subramanian, B. Sadaiappan, W. Aruni, A. Kumarappan, R. Thirunavukarasu, G. P. Srinivasan, S. Bharathi, P. Nainangu, P. S. Renuga, A. Elamaran, D. Balaraman, and M. Subramanian, Bioconversion of chitin and concomitant production of chitinase and N-acetylglucosamine by novel Achromobacter xylosoxidans isolated from shrimp waste disposal area, Sci. Rep. UK., 10, 1-14 (2020). https://doi.org/10.1038/s41598-019-56847-4
  3. X. Sun, D. Yu, Z. Ying, C. Pan, N. Wang, F. Huang, J. Ling, and X. Ouyang, Fabrication of ion-crosslinking aminochitosan nanoparticles for encapsulation and slow release of curcumin, Pharmaceutics, 11, 584 (2019). https://doi.org/10.3390/pharmaceutics11110584
  4. W. Lai, C. Hu, G. Deng, K. Lui, X. Wang, T. Tsoi, S. Wang, and W. Wong, A biocompatible and easy-to-make polyelectrolyte dressing with tunable drug delivery properties for wound care, Int. J. Pharm., 566, 101-110 (2019). https://doi.org/10.1016/j.ijpharm.2019.05.045
  5. S. Hafeez, A. Islam, N. Gull, A. Ali, S. M. Khan, S. Zia, K. anwar, S. U. Khan, and T. Jamil, γ-Irradiated chitosan based injectable hydrogels for controlled release of drug (Montelukast sodium), Int. J. Biol. Macromol., 114, 890-897 (2018). https://doi.org/10.1016/j.ijbiomac.2018.02.107
  6. J. L. Frandsen, and H. Ghandehari, Recombinant protein-based polymers for advanced drug delivery, Chem. Soc. Rev., 41, 2696- 2706 (2012). https://doi.org/10.1039/c2cs15303c
  7. C. Berkland, E. Pollauf, D. W. Pack, and K. Kim, Uniform double-walled polymer microspheres of controllable shell thickness, J. Control. Release, 96, 101-111 (2004). https://doi.org/10.1016/j.jconrel.2004.01.018
  8. T. M. Allen, and P. R. Cullis, Drug delivery systems: entering the mainstream. Science, 303, 1818-1822 (2004). https://doi.org/10.1126/science.1095833
  9. H. Marwah, T. Garg, A. K. Goyal, and G. Rath, Permeation enhancer strategies in transdermal drug delivery, Drug Deliv., 23, 564-578 (2016). https://doi.org/10.3109/10717544.2014.935532
  10. H. Y. Tak, Y. H. Yun, C. M. Lee, and S. D. Yoon, Sulindac imprinted mungbean starch/PVA biomaterial films as a transdermal drug delivery patch, Carbohyd. Polym., 208, 261-268 (2019). https://doi.org/10.1016/j.carbpol.2018.12.076
  11. L. S. Nair, and C. T. Laurencin, Biodegradable polymers as biomaterials, Prog. Polym. Sci., 32, 762-798 (2007). https://doi.org/10.1016/j.progpolymsci.2007.05.017
  12. J. K. Kim, H. J. Kim, J. Y. Chung, J. H. Lee, S. B. Young, and Y. H. Kim, Natural and synthetic biomaterials for controlled drug delivery, Arch. Pharm. Res., 37, 60-68 (2014). https://doi.org/10.1007/s12272-013-0280-6
  13. Y. H. Yun, C. M. Lee, Y. S. Kim, and S. D. Yoon, Preparation of chitosan/polyvinyl alcohol blended films containing sulfosuccinic acid as the crosslinking agent using UV curing process, Food Res. Int., 100, 377-386 (2017). https://doi.org/10.1016/j.foodres.2017.07.030
  14. K. O. Oh, S. W. Kim, J. Y. Kim, S. Y. Ko, H. M. Kim, J. H. Baek, H. M. Ryoo, and J. K. Kim, Effect of Rehmannia glutinosa Libosch extracts on bone metabolism, Clin. Chim. Acta., 334, 185-195 (2003). https://doi.org/10.1016/S0009-8981(03)00238-9
  15. H. H. Yu, S. J. Seo, Y. H. Kim, H. Y. Lee, R. K. Park, H. S. So, S. I. Jang, and Y. O. You, Protective effect of Rehmannia glutinosa on the cisplatin-induced damage of HEI-OC1 auditory cells through scavenging free radicals, J. Ethnopharmacol., 107, 383-388 (2006). https://doi.org/10.1016/j.jep.2006.03.024
  16. C. L. Liu, L. Cheng, C. H. Ko, C. W. Wong, W. H. Cheng, D. W. S. Cheung, P. C. Leung, K. P. Fung, and C. B. S. Lau, Bioassay-guided isolation of anti-inflammatory components from the root of Rehmannia glutinosa and its underlying mechanism via inhibition of iNOS pathway, J. Ethnopharmacol., 143, 867-875 (2012). https://doi.org/10.1016/j.jep.2012.08.012
  17. T. Yokozawa, H. Y. Kim, and N. Tamabe, Amelioration of diabetic nephropathy by dried Rehmanniae Radix (Di Huang) extract, Am. J. Chin. Med., 32, 829-839 (2004). https://doi.org/10.1142/S0192415X04002442
  18. Y. O. Son, S. A. Lee, S. S. Kim, Y. S. Jang, J. C. Chun, and J. C. Lee, Acteoside inhibits melanogenesis in B16F10 cells through ERK activation and tyrosinase down-regulation, J. Pharm. Pharmacol, 63, 1309-1319 (2011). https://doi.org/10.1111/j.2042-7158.2011.01335.x
  19. H. Lee, Y. Kim, H. J. Kim, S. Park, Y. P. Jang, S. Jung, H. Jung, and H. Bae, Herbal formula, PM014, attenuates lung inflammation in a murine model of chronic obstructive pulmonary disease, Evid. based. Compl. Alt., 2012, 1-10 (2012).
  20. R. X. Zhang, M. X. Li, and Z. P. Jia, Rehmannia glutinosa: review of botany, chemistry and pharmacology. J. Ethnopharmacol, 117, 199-214 (2008). https://doi.org/10.1016/j.jep.2008.02.018
  21. H. S. Kim, K. J. Kim, M. W. Lee, S. Y. Lee, Y. H. Yun, W. G. Shim, and S. D. Yoon, Preparation and release properties of arbutin imprinted inulin/polyvinyl alcohol biomaterials, Int. J. Biol. Macromol., 161, 763-770 (2020). https://doi.org/10.1016/j.ijbiomac.2020.06.105
  22. X. Y. Liu, S. Jeshycka, and H. J. Lee, Electrochemical study on transfer reaction of ionizable cefotiam across a water/1,2-dichloroethane interface and drug sensing applications, Appl. Chem. Eng., 29, 581-588 (2018). https://doi.org/10.14478/ACE.2018.1061
  23. M. Q. Zhang, X. Ren, Q. Zhao, S. J. Yue, X. M. Fu, X. Li, K. X. Chen, Y. W. Guo, C. L. Shao, and C. Y. Wang, Hepatoprotective effects of total phenylethanoid glycosides from Acanthus ilicifolius L. against carbon tetrachloride-induced hepatotoxicity, J. Ethnopharmacol., 256, 112795 (2020). https://doi.org/10.1016/j.jep.2020.112795
  24. E. W. C Chan, Y. Y. Lim, L. F. Wong, F. S. Lianto, S. K. Wong, K. K. Lim, C. E. Joe, and T. Y. Lim, Antioxidant and tyrosinase inhibition properties of leaves and rhizomes of ginger species, Food Chem., 109, 477-483 (2008). https://doi.org/10.1016/j.foodchem.2008.02.016
  25. G. Miliauskas, P. R. Venskutonis, and T. A. Van Beek, Screening of radical scavenging activity of some medicinal and aromatic plant extracts, Food Chem., 85, 231-237 (2004). https://doi.org/10.1016/j.foodchem.2003.05.007
  26. N. Azmi, P. Hashim, D. M. Hashim, N. Halimoon, and N. M. N. Majid, Anti-elastase, anti-tyrosinase and matrix metalloproteinase-1 inhibitory activity of earthworm extracts as potential new anti-aging agent, Asian Pac. J. Trop. Med., 4, S348-S352 (2014). https://doi.org/10.1016/S2222-1808(14)60586-7
  27. T. Pillaiyar, M. Manickam, and V. Namasivayam, Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors, J. Enzyme Inhib. Med. Chem., 32, 403-425 (2017). https://doi.org/10.1080/14756366.2016.1256882
  28. A. L. N. Pagning, J. D. D. Tamokou, M. Lateef. L. A. Tapondjou, J. R. Kuiate, D. Ngnokam, and M. S. Ali, New triterpene and new flavone glucoside from Rhynchospora corymbosa (Cyperaceae) with their antimicrobial, tyrosinase and butyrylcholinesterase inhibitory activities, Phytochem. Lett., 16, 121-128 (2016). https://doi.org/10.1016/j.phytol.2016.03.011
  29. B. Madhan, G. Krishnamoorthy, J. R. Rao, and B. U. Nair, Role of green tea polyphenols in the inhibition of collagenolytic activity by collagenase, Int. J. Biol. Macromol., 41, 16-22 (2007). https://doi.org/10.1016/j.ijbiomac.2006.11.013
  30. M. A. Birch-Machin, and A. Bowman, Oxidative stress and ageing, Brit. J. Dermatol., 175, 26-29 (2016). https://doi.org/10.1111/bjd.14906
  31. G. D. Liyanaarachchi, J. K. R. R. Samarasekera, K. R. R. Mahanama, and K. D. P. Hemalal, Tyrosinase, elastase, hyaluronidase, inhibitory and antioxidant activity of Sri Lankan medicinal plants for novel cosmeceuticals, Ind. Crop. Prod., 111, 597-605 (2018). https://doi.org/10.1016/j.indcrop.2017.11.019
  32. S. A. Rafiee, R. Farhoosh, and A. Sharif, Antioxidant activity of gallic acid as affected by an extra carboxyl group than pyrogallol in various oxidative environments, Eur. J. Lipid. Sci. Tech, 120, 1800319 (2018). https://doi.org/10.1002/ejlt.201800319
  33. K. Mishra, H. Ojha, and N. K. Chaudhury, Estimation of anti-radical properties of antioxidants using DPPH assay: A critical review and results, Food Chem., 130, 1036-1043 (2012). https://doi.org/10.1016/j.foodchem.2011.07.127
  34. K. K. Lee, J. H. Kim, J. J. Cho, and J. D. Choi, Inhibitory effects of 150 plant extracts on elastase activity, and their anti-inflammatory effects, Int. J. Cosmetic Sci., 21, 71-82 (1999). https://doi.org/10.1046/j.1467-2494.1999.181638.x