DOI QR코드

DOI QR Code

에폭시 접착제의 탄소나노튜브 함량과 경화시 습도 변화에 따른 GFRP 및 CFRP의 접착강도 변화 평가

Evaluation of the Change in Adhesion Strength of GFRP and CFRP with Carbon Nanotube Contents in Epoxy Adhesive with Moisture Change during Curing

  • 박희웅 (경상국립대학교 나노신소재공학부 고분자공학전공) ;
  • 김종현 (경상국립대학교 나노신소재융합공학과) ;
  • 박종만 (경상국립대학교 나노신소재융합공학과)
  • Park, Hee-Woong (Department of Materials Science and Engineering, Gyeongsang National University) ;
  • Kim, Jong-Hyun (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Park, Joung-Man (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Gyeongsang National University)
  • 투고 : 2022.01.10
  • 심사 : 2022.02.18
  • 발행 : 2022.03.30

초록

풍력블레이드가 대형화되면서 유리섬유 복합재료(GFRP)와 탄소섬유 복합재료(CFRP)를 혼용하여 제작하고 있고, 이 때 두 가지 이종재료 간의 접착특성에 대한 연구가 활발히 진행되고 있다. 본 연구에서는 에폭시 접착제 내 탄소나노튜브 함량 및 경화 시 습도의 차이에 따른 접착강도의 변화를 평가하였다. 탄소나노튜브의 함량이 다른 에폭시 접착제를 활용하여 GFRP와 CFRP를 접착하였고, 경화 시 습도에 따른 특성의 변화를 알아보기 위해 접착강도를 평가하였다. 탄소나노튜브 함량에 따른 변화를 알아보기 위해 접착제에 들어가는 탄소나노튜브의 함량을 0, 0.1, 0.3, 0.5, 1 wt%로 나누어 단일 랩 전단 시험을 진행하였고, 습도 조건에 따른 변화를 확인하기 위해 항온항습기로 습도를 20, 50, 80% 조건으로 나누어 접착제를 경화시킨 후 단일 랩 전단 시험을 진행하였다. 실험결과 에폭시 접착제에 탄소나노튜브를 넣음으로써 접착특성이 향상됨을 확인하였지만 함량이 과도하게 많을 때에는 접착력이 줄어드는 것을 확인하였다. 또한 습도가 증가할수록 접착특성이 변하지 않음을 확인할 수 있었다.

As the wind blades become larger, they tend to be made by mixing glass fiber and carbon fiber, and it is important to increase the properties of the adhesive which adheres the two materials. The physical properties of the adhesive vary depending on the content of the additive and curing conditions. In this study, the change in adhesion strength with the difference between the CNT (Carbon Nanotube) content of the epoxy adhesive and the humidity during curing was evaluated. GFRP and CFRP specimens were prepared and adhered using an epoxy adhesive, and to examine changes in characteristics with carbon nanotube contents and with the humidity during curing of the epoxy adhesive, adhesion strength was evaluated by dividing the difference between carbon nanotube content and humidity. To find out the change with the CNT contents, the intelaminar shear strength (ILSS) test was performed by dividing the contents of the CNT into 0, 0.1, 0.3, 0.5, and 1 wt%, and to confirm the change with the humidity conditions, the adhesive was cured by dividing the humidity by 20, 50, and 80%. From the result of the experiment, the adhesive force decreased when the content was excessively large, although the adhesive property was enhanced by adding CNT to the epoxy adhesive. In addition, it was confirmed that the adhesion characteristics were not changed as the humidity increased.

키워드

과제정보

본 연구는 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 이공학개인기초연구지원사업(No. 2016R1D1A1B0101262016)을 통해 진행한 연구 결과입니다.

참고문헌

  1. S. T. Ke, T.G. Wang, Y.J. Ge ,Y. Tamura, Advances in Structural Engineering, 18(12), 2075 (2016). https://doi.org/10.1260/1369-4332.18.12.2075
  2. C.H. Lee, J.M. Park, T.W. Kim, J.S. Park, The Korea Society of Mechanical Engineers Symposium, 650 (2002).
  3. S.Y Kim, I.S Han, S.K Woo, K.S Hong, The Korean Society for New and Renewable Energy, 378 (2007).
  4. P.W. Sonparote, S.C. Lakkad, Fibre Science and Technology, 16, 309 (1982). https://doi.org/10.1016/0015-0568(82)90051-3
  5. A.A. Khalid, Materials and Design, 27(6), 499 (2006). https://doi.org/10.1016/j.matdes.2004.11.013
  6. D.W. Kim, G. Jeong, J.H. Lim, J.W. Lim, B.M. Yu, K.S. Lee, Journal of Aerospace System Engineering, 12(2), 66 (2018). https://doi.org/10.20910/JASE.2018.12.2.66
  7. H.K. Jang, Y.C. Kim, Composite Research, 29(6), 336 (2016). https://doi.org/10.7234/composres.2016.29.6.336
  8. G.S. Kim, J.H. Jeong, Journal of the Korea Society for Power System Engineering, 19(4), 76 (2015). https://doi.org/10.9726/KSPSE.2015.19.4.076
  9. H.S. Jee, N.H. Ju, C.H. So, J.K. Lee, Journal of the Korean Society for Nondestructive Testing, 35(3), 179 (2015). https://doi.org/10.7779/JKSNT.2015.35.3.179
  10. S.I. Lee, P.S. Shin, J.W. Park, W.D. Joo, Journal of Wind Energy, 12(2), 37 (2021).
  11. H.G. Kim, Y.J. Jang, B.S. Kim, K.W. Kang, New and Renewable Energy, 15(1), 18 (2019). https://doi.org/10.7849/ksnre.2019.3.15.1.018
  12. Y.J. Jang, J.W. Jin, K.W. Kang, The Korean Society of Mechanical Engineers, 19 (2017).
  13. H.G. Kim, Y.J. Jang, J.H. Kim, K.W. Kang, New and Renewable Energy, 15(4), 1 (2019). https://doi.org/10.7849/ksnre.2019.12.15.4.001
  14. H.G. Kim, Y.J. Jang, S.I. Lee, K.W. Kang K.W, The Korean Society of Mechanical Engineers, 34 (2019).
  15. Y.H. Lee, D.W. Lim, J.H. Choi, J.H. Kweon, M.K. Yoon, Composite Structures, 92(12), 2916 (2010). https://doi.org/10.1016/j.compstruct.2010.05.002
  16. C.H. Kim, J.H. Choi, J.H. Kweon, Composite Structures, 120, 183 (2015). https://doi.org/10.1016/j.compstruct.2014.09.045
  17. A.G. Magalhaesa, M.F.S.F. de Mourab, NDT & E International, 38(1), 45 (2005). https://doi.org/10.1016/j.ndteint.2004.06.005
  18. Y. Boutar, S. Naimi, S. Mezlini, M.B.S. Ali, International Journal of Adhesion and Adhesives, 67, 38 (2016). https://doi.org/10.1016/j.ijadhadh.2015.12.023
  19. J.H. Kim, K.Y. Choi, H.J. Joo, F.L. Jin, S.J. Park, Elastomers and composites, 40(3), 166 (2005).
  20. B.U. Kang, Korea Academy Industrial Cooperation Society, 12(3), 1479 (2011). https://doi.org/10.5762/KAIS.2011.12.3.1479
  21. S. Yu, M.N. Tong, G. Critchlow, Materials and Design, 31(1), 126 (2010). https://doi.org/10.1016/j.matdes.2009.06.046
  22. S.H. Yang, S.Y. Yu, J.H. Ryu, M.H. Cho, Journal of the Computational Structural Engineering Institute of Korea, 26(6), 423 (2013). https://doi.org/10.7734/COSEIK.2013.26.6.423
  23. P.S. Shin, D.J. Kwon, J.H. Kim, S.I. Lee, K. L. DeVries, J.M. Park, Composites Science and Technology, 142, 98 (2017). https://doi.org/10.1016/j.compscitech.2017.01.026
  24. M.Y. Ku, J.H. Kim, H.Y. Kang, G.W. Lee, Transactions of the Korean Society of Mechanical Engineers A, 37(5), 657 (2013). https://doi.org/10.3795/KSME-A.2013.37.5.657