DOI QR코드

DOI QR Code

Highly Birefringent Slotted-porous-core Photonic Crystal Fiber with Elliptical-hole Cladding for Terahertz Applications

  • Lee, Yong Soo (Department of Physics, Yonsei University) ;
  • Kim, Soeun (Integrated Optics Laboratory, Advanced Photonic Research Institute, Gwangju Institute of Science and Technology) ;
  • Oh, Kyunghwan (Department of Physics, Yonsei University)
  • Received : 2021.12.14
  • Accepted : 2022.02.21
  • Published : 2022.04.25

Abstract

We propose a photonic crystal fiber (PCF) with a slotted porous core and elliptical-hole cladding, for high birefringence in the terahertz regime. Asymmetry in the guided mode is obtained mainly by using arrays of elliptical air holes in the TOPAS® polymer cladding. We investigate the tradeoff between several structural parameters and find optimized values that can have a high birefringence while satisfying the single-mode condition. The optical properties in the terahertz regime are thoroughly analyzed in numerical simulations, using a full-vector finite-element method with the perfectly-matched-layer condition. In an optimal design, the proposed photonic crystal fiber shows a high birefringence of 8.80 × 10-2 and an effective material loss of 0.07 cm-1 at a frequency of 1 THz, satisfying the single-mode-guidance condition at the same time. The proposed PCF would be useful for various polarization-management applications in the terahertz range.

Keywords

Acknowledgement

National Research Foundation of Korea (NRF 2018R1D1A1B07049349); National Research Foundation of Korea (NRF 2019R1A2C2011293).

References

  1. H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002). https://doi.org/10.1063/1.1468897
  2. S. J. Oh, Y. Hong, K.-Y. Jeong, I. Maeng, J.-S. Suh, J. Yang, and Y.-M. Huh, "Characterization of proton-irradiated polyaniline nanoparticles using terahertz thermal spectroscopy," Crystals 11, 765 (2021). https://doi.org/10.3390/cryst11070765
  3. S.-H. Lee, S. Shin, Y. Roh, S. J. Oh, S. H. Lee, H. S. Song, Y.-S. Ryu, Y. K. Kim, and M. Seo, "Label-free brain tissue imaging using large-area terahertz metamaterials," Biosens. Bioelectron. 170, 112663 (2020). https://doi.org/10.1016/j.bios.2020.112663
  4. G. Lee, I. Maeng, C. Kang, M.-K. Oh, and C.-S. Kee, "Strong polarization-dependent terahertz modulation of aligned Ag nanowires on Si substrate," Opt. Express 26, 13677-13685 (2018). https://doi.org/10.1364/oe.26.013677
  5. T. Yilmaz and O. B. Akan, "On the use of low terahertz band for 5G indoor mobile networks," Comput. Electr. Eng. 48, 164-173 (2015). https://doi.org/10.1016/j.compeleceng.2015.06.012
  6. M. D'Auria, W. J. Otter, J. Hazell, B. T. W. Gillatt, C. LongCollins, N. M. Ridler, and S. Lucyszyn, "3-D printed metalpipe rectangular waveguides," IEEE Trans. Compon. Packag. Manuf. Technol. 5, 1339-1349 (2015). https://doi.org/10.1109/TCPMT.2015.2462130
  7. R. Kaur, M. Islam, P. C. Agarwal, S. Kaur, and G. Kumar, "Terahertz surface plasmons propagation in semiconducting parallel plates waveguide configuration," Europhys. Lett. 134, 38002 (2021). https://doi.org/10.1209/0295-5075/134/38002
  8. G. M. Katyba, K. I. Zaytsev, N. V. Chernomyrdin, I. A. Shikunova, G. A. Komandin, V. B. Anzin, S. P. Lebedev, I. E. Spektor, V. E. Karasik, S. O. Yurchenko, I. V. Reshetov, V. N. Kurlov, and M. Skorobogatiy, "Sapphire photonic crystal waveguides for terahertz sensing in aggressive environments," Adv. Opt. Mater. 6, 1800573 (2018). https://doi.org/10.1002/adom.201800573
  9. K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004). https://doi.org/10.1038/nature03040
  10. G. K. M. Hasanuzzaman, S. Rana, and M. S. Habib, "A novel low loss, highly birefringent photonic crystal fiber in THz regime," IEEE Photon. Technol. Lett. 28, 899-902 (2016). https://doi.org/10.1109/LPT.2016.2517083
  11. R. Islam, Md. S. Habib, G. K. M. Hasanuzzaman, S. Rana, and M.d. A. Sadath, "Novel porous fiber based on dual-asymmetry for low-loss polarization maintaining THz wave guidance," Opt. Lett. 41, 440-443 (2016). https://doi.org/10.1364/OL.41.000440
  12. Md. R. Hasan, Md. S. Anower, Md. A. Islam, and S. M. A. Razzak, "Polarization-maintaining low-loss porous-core spiral photonic crystal fiber for terahertz wave guidance," Appl. Opt. 55, 4145-4152 (2016). https://doi.org/10.1364/AO.55.004145
  13. Y. Zhang, L. Xue, D. Qiao, and Z. Guang, "Porous photonic-crystal fiber with near-zero ultra-flattened dispersion and high birefringence for polarization-maintaining terahertz transmission," Optik 207, 163817 (2020). https://doi.org/10.1016/j.ijleo.2019.163817
  14. I. K. Yakasai, P. E. Abas, H. Syhaimi, and F. Begum, "Low loss and highly birefringent photonic crystal fibre for terahertz applications," Optik 206, 164321 (2020). https://doi.org/10.1016/j.ijleo.2020.164321
  15. J. Sultana, Md. S. Islam, M. Faisal, M. R. Islam, B. W.-H. Ng, H. Ebendorff-Heidepriem, and D. Abbott, "Highly birefringent elliptical core photonic crystal fiber for terahertz application," Opt. Commun. 407, 92-96 (2018). https://doi.org/10.1016/j.optcom.2017.09.020
  16. M. A. Habib and M. S. Anower, "Design and numerical analysis of highly birefringent single mode fiber in THz regime," Opt. Fiber Technol. 47, 197-203 (2019). https://doi.org/10.1016/j.yofte.2018.11.006
  17. M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, "Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers," Opt. Express 16, 7-12 (2008). https://doi.org/10.1364/OE.16.000007
  18. S. Li, H. Liu, N. Huang, and Q. Sun, "Broadband high birefringence and low dispersion terahertz photonic crystal fiber," J. Opt. 16, 105102 (2014). https://doi.org/10.1088/2040-8986/16/10/105102
  19. K. Oh and U.-C. Paek, Silica Optical Fiber Technology for Devices and Components: Design Fabrication and International Standards, (Wiley, USA. 2012).
  20. S. Atakaramians, S. Afshar V., T. M. Monro, and D. Abbott, "Terahertz dielectric waveguides," Adv. Opt. Photonics 5, 169-215 (2013). https://doi.org/10.1364/AOP.5.000169
  21. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, "Bendable, low-loss Topas fibers for the terahertz frequency range," Opt. Express 17, 8592-8601 (2009). https://doi.org/10.1364/OE.17.008592
  22. S. F. Kaijage, Z. Ouyang, and X. Jin, "Porous-core photonic crystal fiber for low loss terahertz wave guiding," IEEE Photonics Technol. Lett. 25, 1454-1457 (2013). https://doi.org/10.1109/LPT.2013.2266412
  23. Y. S. Lee, C. G. Lee, Y. Jung, and S. Kim, "Diamond unit cell photonic crystal fiber with high birefringence and low confinement loss based on circular air holes," Appl. Opt. 54, 6140-6145 (2015). https://doi.org/10.1364/AO.54.006140
  24. M. Midrio, M. P. Singh, and C. G. Someda, "The space filling mode of holey fibers: an analytical vectorial solution," J. Lightwave Technol. 18, 1031-1037 (2000). https://doi.org/10.1109/50.850750
  25. Y. S. Lee, H. Choi, B. Kim, C. Kang, I. Maeng, S. J. Oh, S. Kim, and K. Oh, "Low-loss polytetrafluoroethylene hexagonal porous fiber for terahertz pulse transmission in the 6g mobile communication window," IEEE Trans. Microw. Theory Tech. 69, 4623-4630 (2021). https://doi.org/10.1109/TMTT.2021.3092761
  26. A. Argyros and J. Pla, "Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared," Opt. Express 15, 7713-7719 (2007). https://doi.org/10.1364/OE.15.007713
  27. R. T. Bise and D. J. Trevor, "Sol-gel derived microstructured fiber: fabrication and characterization," in Optical Fiber Communications Conference-OFC (Optica Publishing Group, 2005), paper OWL6.
  28. M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, "Microstructured polymer optical fibre," Opt. Express 9, 319-327 (2001). https://doi.org/10.1364/OE.9.000319
  29. L. D. van Putten, J. Gorecki, E. N. Fokoua, V. Apostolopoulos, and F. Poletti, "3D-printed polymer antiresonant waveguides for short-reach terahertz applications," Appl. Opt. 57, 3953-3958 (2018). https://doi.org/10.1364/ao.57.003953
  30. K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, "Extruded single-mode non-silica glass holey optical fibers," Electron. Lett. 38, 546-547 (2002). https://doi.org/10.1049/el:20020421