Acknowledgement
National Research Foundation of Korea (NRF 2018R1D1A1B07049349); National Research Foundation of Korea (NRF 2019R1A2C2011293).
References
- H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002). https://doi.org/10.1063/1.1468897
- S. J. Oh, Y. Hong, K.-Y. Jeong, I. Maeng, J.-S. Suh, J. Yang, and Y.-M. Huh, "Characterization of proton-irradiated polyaniline nanoparticles using terahertz thermal spectroscopy," Crystals 11, 765 (2021). https://doi.org/10.3390/cryst11070765
- S.-H. Lee, S. Shin, Y. Roh, S. J. Oh, S. H. Lee, H. S. Song, Y.-S. Ryu, Y. K. Kim, and M. Seo, "Label-free brain tissue imaging using large-area terahertz metamaterials," Biosens. Bioelectron. 170, 112663 (2020). https://doi.org/10.1016/j.bios.2020.112663
- G. Lee, I. Maeng, C. Kang, M.-K. Oh, and C.-S. Kee, "Strong polarization-dependent terahertz modulation of aligned Ag nanowires on Si substrate," Opt. Express 26, 13677-13685 (2018). https://doi.org/10.1364/oe.26.013677
- T. Yilmaz and O. B. Akan, "On the use of low terahertz band for 5G indoor mobile networks," Comput. Electr. Eng. 48, 164-173 (2015). https://doi.org/10.1016/j.compeleceng.2015.06.012
- M. D'Auria, W. J. Otter, J. Hazell, B. T. W. Gillatt, C. LongCollins, N. M. Ridler, and S. Lucyszyn, "3-D printed metalpipe rectangular waveguides," IEEE Trans. Compon. Packag. Manuf. Technol. 5, 1339-1349 (2015). https://doi.org/10.1109/TCPMT.2015.2462130
- R. Kaur, M. Islam, P. C. Agarwal, S. Kaur, and G. Kumar, "Terahertz surface plasmons propagation in semiconducting parallel plates waveguide configuration," Europhys. Lett. 134, 38002 (2021). https://doi.org/10.1209/0295-5075/134/38002
- G. M. Katyba, K. I. Zaytsev, N. V. Chernomyrdin, I. A. Shikunova, G. A. Komandin, V. B. Anzin, S. P. Lebedev, I. E. Spektor, V. E. Karasik, S. O. Yurchenko, I. V. Reshetov, V. N. Kurlov, and M. Skorobogatiy, "Sapphire photonic crystal waveguides for terahertz sensing in aggressive environments," Adv. Opt. Mater. 6, 1800573 (2018). https://doi.org/10.1002/adom.201800573
- K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004). https://doi.org/10.1038/nature03040
- G. K. M. Hasanuzzaman, S. Rana, and M. S. Habib, "A novel low loss, highly birefringent photonic crystal fiber in THz regime," IEEE Photon. Technol. Lett. 28, 899-902 (2016). https://doi.org/10.1109/LPT.2016.2517083
- R. Islam, Md. S. Habib, G. K. M. Hasanuzzaman, S. Rana, and M.d. A. Sadath, "Novel porous fiber based on dual-asymmetry for low-loss polarization maintaining THz wave guidance," Opt. Lett. 41, 440-443 (2016). https://doi.org/10.1364/OL.41.000440
- Md. R. Hasan, Md. S. Anower, Md. A. Islam, and S. M. A. Razzak, "Polarization-maintaining low-loss porous-core spiral photonic crystal fiber for terahertz wave guidance," Appl. Opt. 55, 4145-4152 (2016). https://doi.org/10.1364/AO.55.004145
- Y. Zhang, L. Xue, D. Qiao, and Z. Guang, "Porous photonic-crystal fiber with near-zero ultra-flattened dispersion and high birefringence for polarization-maintaining terahertz transmission," Optik 207, 163817 (2020). https://doi.org/10.1016/j.ijleo.2019.163817
- I. K. Yakasai, P. E. Abas, H. Syhaimi, and F. Begum, "Low loss and highly birefringent photonic crystal fibre for terahertz applications," Optik 206, 164321 (2020). https://doi.org/10.1016/j.ijleo.2020.164321
- J. Sultana, Md. S. Islam, M. Faisal, M. R. Islam, B. W.-H. Ng, H. Ebendorff-Heidepriem, and D. Abbott, "Highly birefringent elliptical core photonic crystal fiber for terahertz application," Opt. Commun. 407, 92-96 (2018). https://doi.org/10.1016/j.optcom.2017.09.020
- M. A. Habib and M. S. Anower, "Design and numerical analysis of highly birefringent single mode fiber in THz regime," Opt. Fiber Technol. 47, 197-203 (2019). https://doi.org/10.1016/j.yofte.2018.11.006
- M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, "Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers," Opt. Express 16, 7-12 (2008). https://doi.org/10.1364/OE.16.000007
- S. Li, H. Liu, N. Huang, and Q. Sun, "Broadband high birefringence and low dispersion terahertz photonic crystal fiber," J. Opt. 16, 105102 (2014). https://doi.org/10.1088/2040-8986/16/10/105102
- K. Oh and U.-C. Paek, Silica Optical Fiber Technology for Devices and Components: Design Fabrication and International Standards, (Wiley, USA. 2012).
- S. Atakaramians, S. Afshar V., T. M. Monro, and D. Abbott, "Terahertz dielectric waveguides," Adv. Opt. Photonics 5, 169-215 (2013). https://doi.org/10.1364/AOP.5.000169
- K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, "Bendable, low-loss Topas fibers for the terahertz frequency range," Opt. Express 17, 8592-8601 (2009). https://doi.org/10.1364/OE.17.008592
- S. F. Kaijage, Z. Ouyang, and X. Jin, "Porous-core photonic crystal fiber for low loss terahertz wave guiding," IEEE Photonics Technol. Lett. 25, 1454-1457 (2013). https://doi.org/10.1109/LPT.2013.2266412
- Y. S. Lee, C. G. Lee, Y. Jung, and S. Kim, "Diamond unit cell photonic crystal fiber with high birefringence and low confinement loss based on circular air holes," Appl. Opt. 54, 6140-6145 (2015). https://doi.org/10.1364/AO.54.006140
- M. Midrio, M. P. Singh, and C. G. Someda, "The space filling mode of holey fibers: an analytical vectorial solution," J. Lightwave Technol. 18, 1031-1037 (2000). https://doi.org/10.1109/50.850750
- Y. S. Lee, H. Choi, B. Kim, C. Kang, I. Maeng, S. J. Oh, S. Kim, and K. Oh, "Low-loss polytetrafluoroethylene hexagonal porous fiber for terahertz pulse transmission in the 6g mobile communication window," IEEE Trans. Microw. Theory Tech. 69, 4623-4630 (2021). https://doi.org/10.1109/TMTT.2021.3092761
- A. Argyros and J. Pla, "Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared," Opt. Express 15, 7713-7719 (2007). https://doi.org/10.1364/OE.15.007713
- R. T. Bise and D. J. Trevor, "Sol-gel derived microstructured fiber: fabrication and characterization," in Optical Fiber Communications Conference-OFC (Optica Publishing Group, 2005), paper OWL6.
- M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, "Microstructured polymer optical fibre," Opt. Express 9, 319-327 (2001). https://doi.org/10.1364/OE.9.000319
- L. D. van Putten, J. Gorecki, E. N. Fokoua, V. Apostolopoulos, and F. Poletti, "3D-printed polymer antiresonant waveguides for short-reach terahertz applications," Appl. Opt. 57, 3953-3958 (2018). https://doi.org/10.1364/ao.57.003953
- K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, "Extruded single-mode non-silica glass holey optical fibers," Electron. Lett. 38, 546-547 (2002). https://doi.org/10.1049/el:20020421