과제정보
The research presented in this paper was financially supported by Natural Science Foundation of China (Projects No. 51978244, 51979088, and 52078188).
참고문헌
- Achal, V., Mukherjee, A. and Reddy, M. S. (2010), "ORIGINAL RESEARCH: Biocalcification by Sporosarcina pasteurii using corn steep liquor as the nutrient source", Ind. Biotechnol., 6(3), 170-174. https://doi.org/10.1089/ind.2010.6.170.
- Al Imran, M., Nakashima, K., Evelpidou, N. and Kawasaki, S. (2019), "Factors affecting the urease activity of native ureolytic bacteria isolated from coastal areas", Geomech. Eng., 17(5), 421-427. https://doi.org/10.12989/gae.2019.17.5.421.
- Almajed, A., Tirkolaei, H.K. and Kavazanjian, E. (2018), "Baseline investigation on enzyme-induced calcium carbonate precipitation", J. Geotech. Geoenviron. Eng., 144(11), https://doi.org/10.1061/(ASCE)GT.1943-5606.0001973.
- Almajed, A., Tirkolaei, H.K., Kavazanjian, E. and Hamdan, N. (2019), "Enzyme induced biocementated sand with high strength at low carbonate content", Sci. Rep., 9(1). https://doi.org/10.1038/s41598-018-38361-1.
- ASTM. (2012), "Standard Specification for Standard Sand", ASTM C778-12, ASTM International, West Conshohocken, PA.
- ASTM. (2013), "Standard Test Method for Unconfined Compressive Strength of Cohesive Soil" , ASTM D2166, ASTM International, West Conshohocken, PA.
- Cheng, L., Cord-Ruwisch, R. and Shahin, M.A. (2013), "Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation", Can. Geotech. J., 50(1), 81-90. https://doi.org/10.1139/cgj-2012-0023.
- Cheng, L., Shahin, M.A. and Cord-Ruwisch, R. (2014), "Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments", Geotechnique, 64(12), 1010-1013. https://doi.org/10.1680/geot.14.T.025.
- Cheng, L., Shahin, M.A. and Mujah, D. (2017), "Influence of key environmental conditions on microbially induced cementation for soil stabilization", J. Geotech. Geoenviron. Eng., 143(1), https://doi.org/10.1061/(ASCE)GT.1943-5606.0001586.
- Choi, S.G., Chu, J., and Kwon, T.H. (2019), "Effect of chemical concentrations on strength and crystal size of biocemented sand", Geomechanics and Engineering, 17(5), 465-473. https://doi.org/10.12989/gae.2019.17.5.465.
- Choi, S.G., Chu, J., Brown, R.C., Wang, K. and Wen, Z. (2017a), "Sustainable biocement production via microbially induced calcium carbonate precipitation: Use of limestone and acetic acid derived from pyrolysis of lignocellulosic biomass", ACS Sust. Chem. Eng., 5(6), 5183-5190. https://doi.org/10.1021/acssuschemeng.7b00521.
- Choi, S.G., Park, S.S., Wu, S.F. and Chu, J. (2017b), "Methods for calcium carbonate content measurement of biocemented soils", J. Mater. Civil Eng., 29(11). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002064.
- Choi, S.G., Wu, S.F. and Chu, J. (2016), "Biocementation for Sand Using an Eggshell as Calcium Source", J. Geotech. Geoenviron. Eng., 142(10). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001534.
- Chu, J., Stabnikov, V. and Ivanov, V. (2012), "Microbially induced calcium carbonate precipitation on surface or in the bulk of soil", Geomicrobio. J., 29(6), 544-549. https://doi.org/10.1080/01490451.2011.592929.
- Chung, J.S., Kim, B.H. and Kim, I.S. (2014), "A case study on chloride corrosion for the end zone of concrete deck subjected to de-icing salts added calcium chloride", J. Korean Soc. Saf., 29(6),87-93. https://doi.org/10.14346/JKOSOS.2014.29.6.087.
- Cuccurullo, A., Gallipoli, D., Bruno, A.W., Augarde, C. and Borderie, C.L. (2020), "Earth stabilisation via carbonate precipitation by plant-derived urease for building applications", Geomech. Energy Environ., (5), 100230. https://doi.org/10.1016/j.gete.2020.100230.
- Cui, M.J., Lai, H.J., Hoang, T. and Chu, J. (2020), "One-phase-low-pH enzyme induced carbonate precipitation (EICP) method for soil improvement", Acta Geotechnica, 16(2), 481-489. https://doi.org/10.1007/s11440-020-01043-2.
- Dilrukshi, R.A.N., Nakashima, K. and Kawasaki, S. (2018), "Soil improvement using plant-derived urease-induced calcium carbonate precipitation", Soils Found., 58(4), 894-910. https://doi.org/10.1016/j.sandf.2018.04.003.
- Do, J., Montoya, B.M. and Gabr, M.A. (2019), "Debonding of microbially induced carbonate precipitation-stabilized sand by shearing and erosion", Geomech. Eng., 17(5), 429-438. https://doi.org/10.12989/gae.2019.17.5.429.
- Gao, Y., He, J., Tang, X. and Chu, J. (2019), "Calcium carbonate precipitation catalyzed by soybean urease as an improvement method for fine-grained soil", Soils Found., 59(5), 1631-1637. https://doi.org/10.1016/j.sandf.2019.03.014.
- Gebauer, D., Volkel, A. and Colfen, H. (2008), "Stable prenucleation calcium carbonate clusters", Science, 322(5909), 1819-1822. https://doi.org/10.1126/science.1164271.
- Hamdan, N. and Kavazanjian, E. (2016), "Enzyme-induced carbonate mineral precipitation for fugitive dust control", Geotechnique, 66(7), 546-555. https://doi.org/10.1680/jgeot.15.P.168.
- Hamed, K.T., Martin, K., Krishnan, V. and Kavazanjian, E. (2018), "Bench-scale bio-grouted column formation using enzyme-induced carbonate precipitation", B2G, Atlanta,USA, October.
- Hang, L., Gao, Y., He, J. and Chu, J. (2019), "Mechanical behaviour of biocemented sand under triaxial consolidated undrained or constant shear drained conditions", Geomech. Eng., 17(5), 497-505. https://doi.org/10.12989/gae.2019.17.5.497.
- He, J., Gao, Y., Gu, Z., Chu, J. and Wang, L. (2020), "Characterization of crude bacterial urease for CaCO3 precipitation and cementation of silty sand", J. Mater. Civil Eng., 32(5), 04020071.04020071-04020071.04020079. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003100.
- Hoang, T., Alleman, J., Cetin, B. and Choi, S.G. (2020), "Engineering properties of biocementation coarse- and fine-grained sand catalyzed by bacterial cells and bacterial enzyme", J. Mater. Civil Eng., 32(4), https://doi.org/10.1061/(ASCE)MT.1943-5533.0003083.
- Hoang, T., Alleman, J., Cetin, B., Ikuma, K. and Choi, S.G. (2019), "Sand and silty-sand soil stabilization using bacterial enzyme-induced calcite precipitation (BEICP)", Can. Geotech. J., 56(6), 808-822. https://doi.org/10.1139/cgj-2018-0191.
- Javadi, N., Khodadadi, H., Hamdan, N. and Kavazanjian, E. (2018), "EICP Treatment of Soil by Using Urease Enzyme Extracted from Watermelon Seeds", Proceedings of the IFCEE 2018, 115-124.
- Junjie, F., Deguang, C., Zhenzi, J., Yi, Z., Li, P.U. and Yani, J. (2014), "Synthesis and microstructure analysis of autoclaved aerated concrete with carbide slag addition", J. Wuhan Univ. Technol., 29(5),1005-1010. https://doi.org/10.1007/s11595-014-1034-0.
- Kavazanjian, E. and Hamdan, N. (2015), "Enzyme Induced Carbonate Precipitation (EICP) columns for ground improvement", Geo-congress.
- Khodadadi, T.H., Kavazanjian, E., van Paassen, L. and DeJong, J. (2017), "Bio-grout materials: A review", Proceedings of the 5th International Conference on Grouting, Deep Mixing, and Diaphragm Walls, 1-12. https://doi.org/10.1061/9780784480793.001.
- Li, W., Yi, Y. and Puppala, A.J. (2019), "Utilization of carbide slag-activated ground granulated blastfurnace slag to treat gypseous soil", Soils Found., 59(5), 1496-1507. https://doi.org/10.1016/j.sandf.2019.06.002.
- Liang, S., Chen, J., Niu, J., Gong, X. and Feng, D. (2019), "Using recycled calcium sources to solidify sandy soil through microbial induced carbonate precipitation", Mar. Georesour. Geotechnol., 38(4), 393-399. https://doi.org/10.1080/1064119x.2019.1575939.
- Liu, L., Liu, H., Xiao, Y., Chu, J., Xiao, P. and Wang, Y. (2018), "Biocementation of calcareous sand using soluble calcium derived from calcareous sand", Bull. Eng. Geol. Environ., 77(4), 1781-1791. https://doi.org/10.1007/s10064-017-1106-4.
- Martinez, B.C., DeJong, J.T., Ginn, T.R., Montoya, B.M., Barkouki, T.H., Hunt, C., Tanyu, B. and Major, D. (2013), "Experimental optimization of microbial-induced carbonate precipitation for soil improvement", J. Geotech. Geoenviron. Eng., 139(4), 587-598. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000787.
- Meng, H., Gao, Y., He, J., Qi, Y. and Hang, L. (2021a), "Microbially induced carbonate precipitation for wind erosion control of desert soil: Field-scale tests", Geoderma, 383. https://doi.org/10.1016/j.geoderma.2020.114723.
- Meng, H., Shu, S., Gao, Y., Yan, B. and He, J. (2021b), "Multiple-phase enzyme-induced carbonate precipitation (EICP) method for soil improvement", Eng. Geol., 294(11), 106374. https://10.1016/j.enggeo.2021.106374.
- Montoya, B.M. and DeJong, J.T. (2015), "Stress-strain behavior of sands cemented by microbially induced calcite precipitation", J. Geotech. Geoenviron. Eng., 141(6). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001302.
- Nafisi, A., Safavizadeh, S. and Montoya, B.M. (2019), "Influence of microbe and enzyme-induced treatments on cemented sand shear response", J. Geotech. Geoenviron. Eng., 145(9). https://doi.org/10.1061/(ASCE)GT.1943-5606.0002111.
- Nam, I.H., Chon, C.M., Jung, K.Y., Choi, S.G., Choi, H. and Park, S.S. (2014), "Calcite precipitation by ureolytic plant (Canavalia ensiformis) extracts as effective biomaterials", KSCE J. Civil Eng., 19(6), 1620-1625. https://doi.org/ 10.1007/s12205-014-0558-3.
- Paassen, L.A.V., Ghose, R., Linden, T.J.M.V.D., Star, W.R.L.V.D. and Loosdrecht, M.C.M.V. (2010), "Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment", J. Geotech. Geoenviron. Eng., 136(12), 1721-1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382.
- Park, S.S., Choi, S.G. and Nam, I.H. (2014), "Effect of plant-induced calcite precipitation on the strength of sand", J. Mater. Civil Eng., 26(8). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001029.
- Phua, Y.J. and Royne, A. (2018), "Bio-cementation through controlled dissolution and recrystallization of calcium carbonate", Constr. Build. Mater., 16, 7657-668. https://doi.org/10.1016/j.conbuildmat.2018.02.059.
- Proto, C.J., DeJong, J.T. and Nelson, D.C. (2016), "Biomediated permeability reduction of saturated sands", J. Geotech. Geoenviron. Eng., 142(12). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001558.
- Putra, H., Yasuhara, H., Kinoshita, N., Neupane, D. and Lu, C.W. (2016), "Effect of magnesium as substitute material in enzyme-mediated calcite precipitation for soil-improvement technique", Front. Bioeng. Biotechnol., 4(37). https://doi.org/10.3389/fbioe.2016.00037.
- Qabany, A.A. and Soga, K. (2013), "Effect of chemical treatment used in MICP on engineering properties of cemented soils", Geotechnique, 63(4), 331-339. https://doi.org/10.1680/geot.SIP13.P.022.
- Ran, D. and Kawasaki, S. (2016), "Effective use of plant-derived urease in the field of geoenvironmental/ geotechnical engineering", J. Civil Environ. Eng., 6(1). https://doi.org/10.4172/2165-784x.1000207.
- Sidik, W.S., Canakci, H., Kilic, I.H. and Celik, F. (2014), "Applicability of biocementation for organic soil and its effect on permeability", Geomech. Eng., 7(6), 649-663. https://doi.org/10.12989/gae.2014.7.6.649.
- Song, J.Y., Sim, Y., Yeom, S., Jang, J. and Yun, T.S. (2020), "Stiffness loss in enzyme-induced carbonate precipitated sand with stress scenarios", Geomech. Eng., 20(2), 165-174. https://doi.org/10.12989/gae.2020.20.2.165.
- Tao, X., Zhang, G., Zhang, P., Wang, S., Nabi, M. and Wang, H. (2018), "Thermo-carbide slag pretreatment of energy plants for enhancing enzymatic hydrolysis", Ind. Crops Products, 120, 77-83. https://doi.org/10.1016/j.indcrop.2018.04.038.
- Tirkolaei, H.K., Javadi, N., Krishnan, V., Hamdan, N. and Kavazanjian, E. (2020), "Crude urease extract for biocementation", J. Mater. Civil Eng., 32(12). https://doi.org/10.1061/(ASCE)MT.1943-5533.0003466.
- Wang, Y., Ye, B., Hong, Z., Wang, Y. and Liu, M. (2020), "Uniform calcite mircro/nanorods preparation from carbide slag using recyclable citrate extractant", J. Cleaner Production, 253. https://doi.org/10.1016/j.jclepro.2019.119930.
- Whiffin, V.S., van Paassen, L.A. and Harkes, M.P. (2007), "Microbial carbonate precipitation as a soil improvement technique", Geomicrobio. J., 24(5), 417-423. https://doi.org/10.1080/01490450701436505.
- Yasuhara, H., Neupane, D., Hayashi, K. and Okamura, M. (2012), "Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation", Soils Found., 52(3), 539-549. https://doi.org/10.1016/j.sandf.2012.05.011.
- Yuan, Q., Shi, C., Schutter, G.D., Audenaert, K. and Deng, D. (2009), "Chloride binding of cement-based materials subjected to external chloride environment - A review", Constr. Build. Mater., 23(1), 1-13. https://doi.org/10.1016/j.conbuildmat.2008.02.004.
- Zhang, Y., Guo, H.X. and Cheng, X.H. (2014), "Influences of calcium sources on microbially induced carbonate precipitation in porous media", Mater. Res. Innov., 18(2), 79-84. https://doi.org/10.1179/1432891714z.000000000384.
- Zhang, Y., Guo, H.X. and Cheng, X.H. (2015), "Role of calcium sources in the strength and microstructure of microbial mortar", Constr. Build. Mater., 77. 160-167. https://doi.org/10.1016/j.conbuildmat.2014.12.040.