DOI QR코드

DOI QR Code

Biocementation via soybean-urease induced carbonate precipitation using carbide slag powder derived soluble calcium

  • Qi, Yongshuai (Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University) ;
  • Gao, Yufeng (Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University) ;
  • Meng, Hao (Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University) ;
  • He, Jia (Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University) ;
  • Liu, Yang (Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University)
  • Received : 2021.07.06
  • Accepted : 2021.12.21
  • Published : 2022.04.10

Abstract

Soybean-urease induced carbonate precipitation (EICP), as an alternative to microbially induced carbonate precipitation (MICP), was employed for soil improvement. Meanwhile, soluble calcium produced from industrial waste carbide slag powder (CSP) via the acid dissolution method was used for the EICP process. The ratio of CSP to the acetic acid solution was optimized to obtain a desirable calcium concentration with an appropriate pH. The calcium solution was then used for the sand columns test, and the engineering properties of the EICP-treated sand, including unconfined compressive strength, permeability, and calcium carbonate content, were evaluated. Results showed that the properties of the biocemented sand using the CSP derived calcium solution were comparable to those using the reagent grade CaCl2. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses revealed that spherical vaterite crystals were mainly formed when the CSP-derived calcium solution was used. In contrast, spherical calcite crystals were primarily formed as the reagent grade CaCl2 was used. This study highlighted that it was effective and sustainable to use soluble calcium produced from CSP for the EICP process.

Keywords

Acknowledgement

The research presented in this paper was financially supported by Natural Science Foundation of China (Projects No. 51978244, 51979088, and 52078188).

References

  1. Achal, V., Mukherjee, A. and Reddy, M. S. (2010), "ORIGINAL RESEARCH: Biocalcification by Sporosarcina pasteurii using corn steep liquor as the nutrient source", Ind. Biotechnol., 6(3), 170-174. https://doi.org/10.1089/ind.2010.6.170.
  2. Al Imran, M., Nakashima, K., Evelpidou, N. and Kawasaki, S. (2019), "Factors affecting the urease activity of native ureolytic bacteria isolated from coastal areas", Geomech. Eng., 17(5), 421-427. https://doi.org/10.12989/gae.2019.17.5.421.
  3. Almajed, A., Tirkolaei, H.K. and Kavazanjian, E. (2018), "Baseline investigation on enzyme-induced calcium carbonate precipitation", J. Geotech. Geoenviron. Eng., 144(11), https://doi.org/10.1061/(ASCE)GT.1943-5606.0001973.
  4. Almajed, A., Tirkolaei, H.K., Kavazanjian, E. and Hamdan, N. (2019), "Enzyme induced biocementated sand with high strength at low carbonate content", Sci. Rep., 9(1). https://doi.org/10.1038/s41598-018-38361-1.
  5. ASTM. (2012), "Standard Specification for Standard Sand", ASTM C778-12, ASTM International, West Conshohocken, PA.
  6. ASTM. (2013), "Standard Test Method for Unconfined Compressive Strength of Cohesive Soil" , ASTM D2166, ASTM International, West Conshohocken, PA.
  7. Cheng, L., Cord-Ruwisch, R. and Shahin, M.A. (2013), "Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation", Can. Geotech. J., 50(1), 81-90. https://doi.org/10.1139/cgj-2012-0023.
  8. Cheng, L., Shahin, M.A. and Cord-Ruwisch, R. (2014), "Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments", Geotechnique, 64(12), 1010-1013. https://doi.org/10.1680/geot.14.T.025.
  9. Cheng, L., Shahin, M.A. and Mujah, D. (2017), "Influence of key environmental conditions on microbially induced cementation for soil stabilization", J. Geotech. Geoenviron. Eng., 143(1), https://doi.org/10.1061/(ASCE)GT.1943-5606.0001586.
  10. Choi, S.G., Chu, J., and Kwon, T.H. (2019), "Effect of chemical concentrations on strength and crystal size of biocemented sand", Geomechanics and Engineering, 17(5), 465-473. https://doi.org/10.12989/gae.2019.17.5.465.
  11. Choi, S.G., Chu, J., Brown, R.C., Wang, K. and Wen, Z. (2017a), "Sustainable biocement production via microbially induced calcium carbonate precipitation: Use of limestone and acetic acid derived from pyrolysis of lignocellulosic biomass", ACS Sust. Chem. Eng., 5(6), 5183-5190. https://doi.org/10.1021/acssuschemeng.7b00521.
  12. Choi, S.G., Park, S.S., Wu, S.F. and Chu, J. (2017b), "Methods for calcium carbonate content measurement of biocemented soils", J. Mater. Civil Eng., 29(11). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002064.
  13. Choi, S.G., Wu, S.F. and Chu, J. (2016), "Biocementation for Sand Using an Eggshell as Calcium Source", J. Geotech. Geoenviron. Eng., 142(10). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001534.
  14. Chu, J., Stabnikov, V. and Ivanov, V. (2012), "Microbially induced calcium carbonate precipitation on surface or in the bulk of soil", Geomicrobio. J., 29(6), 544-549. https://doi.org/10.1080/01490451.2011.592929.
  15. Chung, J.S., Kim, B.H. and Kim, I.S. (2014), "A case study on chloride corrosion for the end zone of concrete deck subjected to de-icing salts added calcium chloride", J. Korean Soc. Saf., 29(6),87-93. https://doi.org/10.14346/JKOSOS.2014.29.6.087.
  16. Cuccurullo, A., Gallipoli, D., Bruno, A.W., Augarde, C. and Borderie, C.L. (2020), "Earth stabilisation via carbonate precipitation by plant-derived urease for building applications", Geomech. Energy Environ., (5), 100230. https://doi.org/10.1016/j.gete.2020.100230.
  17. Cui, M.J., Lai, H.J., Hoang, T. and Chu, J. (2020), "One-phase-low-pH enzyme induced carbonate precipitation (EICP) method for soil improvement", Acta Geotechnica, 16(2), 481-489. https://doi.org/10.1007/s11440-020-01043-2.
  18. Dilrukshi, R.A.N., Nakashima, K. and Kawasaki, S. (2018), "Soil improvement using plant-derived urease-induced calcium carbonate precipitation", Soils Found., 58(4), 894-910. https://doi.org/10.1016/j.sandf.2018.04.003.
  19. Do, J., Montoya, B.M. and Gabr, M.A. (2019), "Debonding of microbially induced carbonate precipitation-stabilized sand by shearing and erosion", Geomech. Eng., 17(5), 429-438. https://doi.org/10.12989/gae.2019.17.5.429.
  20. Gao, Y., He, J., Tang, X. and Chu, J. (2019), "Calcium carbonate precipitation catalyzed by soybean urease as an improvement method for fine-grained soil", Soils Found., 59(5), 1631-1637. https://doi.org/10.1016/j.sandf.2019.03.014.
  21. Gebauer, D., Volkel, A. and Colfen, H. (2008), "Stable prenucleation calcium carbonate clusters", Science, 322(5909), 1819-1822. https://doi.org/10.1126/science.1164271.
  22. Hamdan, N. and Kavazanjian, E. (2016), "Enzyme-induced carbonate mineral precipitation for fugitive dust control", Geotechnique, 66(7), 546-555. https://doi.org/10.1680/jgeot.15.P.168.
  23. Hamed, K.T., Martin, K., Krishnan, V. and Kavazanjian, E. (2018), "Bench-scale bio-grouted column formation using enzyme-induced carbonate precipitation", B2G, Atlanta,USA, October.
  24. Hang, L., Gao, Y., He, J. and Chu, J. (2019), "Mechanical behaviour of biocemented sand under triaxial consolidated undrained or constant shear drained conditions", Geomech. Eng., 17(5), 497-505. https://doi.org/10.12989/gae.2019.17.5.497.
  25. He, J., Gao, Y., Gu, Z., Chu, J. and Wang, L. (2020), "Characterization of crude bacterial urease for CaCO3 precipitation and cementation of silty sand", J. Mater. Civil Eng., 32(5), 04020071.04020071-04020071.04020079. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003100.
  26. Hoang, T., Alleman, J., Cetin, B. and Choi, S.G. (2020), "Engineering properties of biocementation coarse- and fine-grained sand catalyzed by bacterial cells and bacterial enzyme", J. Mater. Civil Eng., 32(4), https://doi.org/10.1061/(ASCE)MT.1943-5533.0003083.
  27. Hoang, T., Alleman, J., Cetin, B., Ikuma, K. and Choi, S.G. (2019), "Sand and silty-sand soil stabilization using bacterial enzyme-induced calcite precipitation (BEICP)", Can. Geotech. J., 56(6), 808-822. https://doi.org/10.1139/cgj-2018-0191.
  28. Javadi, N., Khodadadi, H., Hamdan, N. and Kavazanjian, E. (2018), "EICP Treatment of Soil by Using Urease Enzyme Extracted from Watermelon Seeds", Proceedings of the IFCEE 2018, 115-124.
  29. Junjie, F., Deguang, C., Zhenzi, J., Yi, Z., Li, P.U. and Yani, J. (2014), "Synthesis and microstructure analysis of autoclaved aerated concrete with carbide slag addition", J. Wuhan Univ. Technol., 29(5),1005-1010. https://doi.org/10.1007/s11595-014-1034-0.
  30. Kavazanjian, E. and Hamdan, N. (2015), "Enzyme Induced Carbonate Precipitation (EICP) columns for ground improvement", Geo-congress.
  31. Khodadadi, T.H., Kavazanjian, E., van Paassen, L. and DeJong, J. (2017), "Bio-grout materials: A review", Proceedings of the 5th International Conference on Grouting, Deep Mixing, and Diaphragm Walls, 1-12. https://doi.org/10.1061/9780784480793.001.
  32. Li, W., Yi, Y. and Puppala, A.J. (2019), "Utilization of carbide slag-activated ground granulated blastfurnace slag to treat gypseous soil", Soils Found., 59(5), 1496-1507. https://doi.org/10.1016/j.sandf.2019.06.002.
  33. Liang, S., Chen, J., Niu, J., Gong, X. and Feng, D. (2019), "Using recycled calcium sources to solidify sandy soil through microbial induced carbonate precipitation", Mar. Georesour. Geotechnol., 38(4), 393-399. https://doi.org/10.1080/1064119x.2019.1575939.
  34. Liu, L., Liu, H., Xiao, Y., Chu, J., Xiao, P. and Wang, Y. (2018), "Biocementation of calcareous sand using soluble calcium derived from calcareous sand", Bull. Eng. Geol. Environ., 77(4), 1781-1791. https://doi.org/10.1007/s10064-017-1106-4.
  35. Martinez, B.C., DeJong, J.T., Ginn, T.R., Montoya, B.M., Barkouki, T.H., Hunt, C., Tanyu, B. and Major, D. (2013), "Experimental optimization of microbial-induced carbonate precipitation for soil improvement", J. Geotech. Geoenviron. Eng., 139(4), 587-598. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000787.
  36. Meng, H., Gao, Y., He, J., Qi, Y. and Hang, L. (2021a), "Microbially induced carbonate precipitation for wind erosion control of desert soil: Field-scale tests", Geoderma, 383. https://doi.org/10.1016/j.geoderma.2020.114723.
  37. Meng, H., Shu, S., Gao, Y., Yan, B. and He, J. (2021b), "Multiple-phase enzyme-induced carbonate precipitation (EICP) method for soil improvement", Eng. Geol., 294(11), 106374. https://10.1016/j.enggeo.2021.106374.
  38. Montoya, B.M. and DeJong, J.T. (2015), "Stress-strain behavior of sands cemented by microbially induced calcite precipitation", J. Geotech. Geoenviron. Eng., 141(6). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001302.
  39. Nafisi, A., Safavizadeh, S. and Montoya, B.M. (2019), "Influence of microbe and enzyme-induced treatments on cemented sand shear response", J. Geotech. Geoenviron. Eng., 145(9). https://doi.org/10.1061/(ASCE)GT.1943-5606.0002111.
  40. Nam, I.H., Chon, C.M., Jung, K.Y., Choi, S.G., Choi, H. and Park, S.S. (2014), "Calcite precipitation by ureolytic plant (Canavalia ensiformis) extracts as effective biomaterials", KSCE J. Civil Eng., 19(6), 1620-1625. https://doi.org/ 10.1007/s12205-014-0558-3.
  41. Paassen, L.A.V., Ghose, R., Linden, T.J.M.V.D., Star, W.R.L.V.D. and Loosdrecht, M.C.M.V. (2010), "Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment", J. Geotech. Geoenviron. Eng., 136(12), 1721-1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382.
  42. Park, S.S., Choi, S.G. and Nam, I.H. (2014), "Effect of plant-induced calcite precipitation on the strength of sand", J. Mater. Civil Eng., 26(8). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001029.
  43. Phua, Y.J. and Royne, A. (2018), "Bio-cementation through controlled dissolution and recrystallization of calcium carbonate", Constr. Build. Mater., 16, 7657-668. https://doi.org/10.1016/j.conbuildmat.2018.02.059.
  44. Proto, C.J., DeJong, J.T. and Nelson, D.C. (2016), "Biomediated permeability reduction of saturated sands", J. Geotech. Geoenviron. Eng., 142(12). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001558.
  45. Putra, H., Yasuhara, H., Kinoshita, N., Neupane, D. and Lu, C.W. (2016), "Effect of magnesium as substitute material in enzyme-mediated calcite precipitation for soil-improvement technique", Front. Bioeng. Biotechnol., 4(37). https://doi.org/10.3389/fbioe.2016.00037.
  46. Qabany, A.A. and Soga, K. (2013), "Effect of chemical treatment used in MICP on engineering properties of cemented soils", Geotechnique, 63(4), 331-339. https://doi.org/10.1680/geot.SIP13.P.022.
  47. Ran, D. and Kawasaki, S. (2016), "Effective use of plant-derived urease in the field of geoenvironmental/ geotechnical engineering", J. Civil Environ. Eng., 6(1). https://doi.org/10.4172/2165-784x.1000207.
  48. Sidik, W.S., Canakci, H., Kilic, I.H. and Celik, F. (2014), "Applicability of biocementation for organic soil and its effect on permeability", Geomech. Eng., 7(6), 649-663. https://doi.org/10.12989/gae.2014.7.6.649.
  49. Song, J.Y., Sim, Y., Yeom, S., Jang, J. and Yun, T.S. (2020), "Stiffness loss in enzyme-induced carbonate precipitated sand with stress scenarios", Geomech. Eng., 20(2), 165-174. https://doi.org/10.12989/gae.2020.20.2.165.
  50. Tao, X., Zhang, G., Zhang, P., Wang, S., Nabi, M. and Wang, H. (2018), "Thermo-carbide slag pretreatment of energy plants for enhancing enzymatic hydrolysis", Ind. Crops Products, 120, 77-83. https://doi.org/10.1016/j.indcrop.2018.04.038.
  51. Tirkolaei, H.K., Javadi, N., Krishnan, V., Hamdan, N. and Kavazanjian, E. (2020), "Crude urease extract for biocementation", J. Mater. Civil Eng., 32(12). https://doi.org/10.1061/(ASCE)MT.1943-5533.0003466.
  52. Wang, Y., Ye, B., Hong, Z., Wang, Y. and Liu, M. (2020), "Uniform calcite mircro/nanorods preparation from carbide slag using recyclable citrate extractant", J. Cleaner Production, 253. https://doi.org/10.1016/j.jclepro.2019.119930.
  53. Whiffin, V.S., van Paassen, L.A. and Harkes, M.P. (2007), "Microbial carbonate precipitation as a soil improvement technique", Geomicrobio. J., 24(5), 417-423. https://doi.org/10.1080/01490450701436505.
  54. Yasuhara, H., Neupane, D., Hayashi, K. and Okamura, M. (2012), "Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation", Soils Found., 52(3), 539-549. https://doi.org/10.1016/j.sandf.2012.05.011.
  55. Yuan, Q., Shi, C., Schutter, G.D., Audenaert, K. and Deng, D. (2009), "Chloride binding of cement-based materials subjected to external chloride environment - A review", Constr. Build. Mater., 23(1), 1-13. https://doi.org/10.1016/j.conbuildmat.2008.02.004.
  56. Zhang, Y., Guo, H.X. and Cheng, X.H. (2014), "Influences of calcium sources on microbially induced carbonate precipitation in porous media", Mater. Res. Innov., 18(2), 79-84. https://doi.org/10.1179/1432891714z.000000000384.
  57. Zhang, Y., Guo, H.X. and Cheng, X.H. (2015), "Role of calcium sources in the strength and microstructure of microbial mortar", Constr. Build. Mater., 77. 160-167. https://doi.org/10.1016/j.conbuildmat.2014.12.040.