References
- Abaqus 6.18 (2018), Analysis User's Manual, Providence, Dassault Systemes, RI.
- Alam, M., Youssef, M. and Nehdi, M. (2007), "Utilizing shape memory alloys to enhance the performance and safety of civil infrastructure: A review", Can. J. Civil Eng., 34(9), 1075-1086. https://doi.org/10.1139/l07-038.
- Asgarian, B. and Moradi, S. (2011), "Seismic response of steel braced frames with shape memory alloy braces", J. Constr. Steel Res., 67, 65-74. https://doi.org/10.1016/j.jcsr.2010.06.006.
- Barkhori, M., Maleki, S., Mirtaheri, M., Nazeryan, M. and Kolbadi, S.M.S. (2020), "Investigation of shear lag effect on tension members fillet-welded connections consisting of single and double channel sections", Struct. Eng. Mech., 74(3), 445-455. https://doi.org/10.12989/sem.2020.74.3.445.
- Benavent-Climent, A. (2008), "Development and application of passive structural control systems in the moderate-seismicity mediterranean area", The 14 th World Conference on Earthquake Engineering, Beijing.
- Benavent-Climent, A. (2010), "A new hysteretic damper based on yielding of I-Shape sections for seismic protection of buildings", 14 ECEE.
- Buehler, W.J., Gilfrich, J.V. and Wiley, R.C. (1963), "Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi", Appl. Phys., 34(147), 5-7. https://doi.org/10.1063/1.1729603.
- Canxing, Q. and Songye, Z. (2017), "Shake table test and numerical study of self-centering steel frame with SMA braces", Earthq. Eng. Struct. Dyn., 46, 117-137. https://doi.org/10.1002/eqe.2777.
- Canxing, Q., Hongyang, W., Jiawang, L., Jian, Q. and Yanming, W. (2020), "Experimental tests and finite element simulations of a new SMA-steel damper", Smart Mater. Struct., 29(3), 035016. https://doi.org/10.1088/1361-665x/ab6abd
- Casciati, F. and van der Eijk, C. (2008), "Variability in mechanical properties and microstructure characterization of CuAlBe shape memory alloys for vibration mitigation", Smart Struct. Syst., 4(2), 103-121. https://doi.org/10.12989/sss.2008.4.2.103.
- Casciati, S. and Marzi, A. (2010), "Experimental studies on the fatigue life of shape memory alloy bars", Smart Struct. Syst., 6(1), 73-85. https://doi.org/10.12989/sss.2010.6.1.073.
- Chan, R. and Albermani, F. (2008), "Experimental study of steel slit damper for passive energy dissipation", Eng. Struct., 30, 1058-1066. https://doi.org/10.1016/j.engstruct.2007.07.005.
- Chowdhury, M.A., Rahmzadeh, A., Moradi, S. and Alam, M.S. (2019), "Feasibility of using reduced length superelastic shape memory alloy strands in post-tensioned steel beam-column connections", J. Intel. Mater. Syst. Struct., 30(2), 283-307. https://doi.org/10.1177/1045389X18806393.
- Christopoulos, C., Tremblay, R., Kim, H.J. and Lacerte, M. (2008), "Self-centering energy dissipative bracing system for the seismic resistance of structures: Development and validation", J. Struct. Eng., 134(1), 96-107. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(96).
- Clark, P.W., Aiken, I.D., Kelly, J.M., Higashino, M. and Krumme, R.C. (1995), "Experimental and analytical studies of shape memory alloy dampers for structural control", Smart Struct. Mater. 1995: Passive Damp., 2445, 241-251. https://doi.org/10.1117/12.208891.
- Dolce, M. and Cardone, D. (2006), "Theoretical and experimental studies for the application of shape memory alloys in civil engineering", J. Eng. Mater. Technol., Tran., ASME, 128(3), 302-311. https://doi.org/10.1115/1.2203106.
- Dolce, M., Cardone, D. and Marnetto, R. (2000), "Implementation and testing of passive control devices based on shape memory alloys", Earthq. Eng. Struct. Dyn., 29(7), 945-968. https://doi.org/10.1002/1096-9845(200007)29:7<945::AIDEQE958>3.0.CO;2-%23.
- Dolce, M., Cardone, D., Ponzo, F.C. and Valente, C. (2005), "Shaking table tests on reinforced concrete frames with out and with passive control systems", Earthq. Eng. Struct. Dyn., 34(14), 1687-1717. https://doi.org/10.1002/eqe.501.
- Evard, M.E., Volkov, A.E. and Bobeleva, O.V. (2006), "An approach for modelling fracture of shape memory alloy parts", Smart Struct. Syst., 2(4), 357-363. https://doi.org/10.12989/sss.2006.2.4.357.
- Ghabraie, K., Chan, R., Huang, X. and Xie, Y.M. (2010), "Shape optimization of metallic yielding devices for passive mitigation of seismic energy", Eng. Struct., 32, 2258-2267. https://doi.org/10.1016/j.engstruct.2010.03.028.
- Ghaffarzadeh, H. and Mansouri, A. (2008), "Investigation of the behavior factor in sma braced frames", The 14th World Conference on Earthquake Engineering, Beijing, China.
- Ghods, S., Kheyroddin, A., Nazeryan, M., Mirtaheri, S.M. and Gholhaki, M. (2016), "Nonlinear behavior of connections in RCS frames with bracing and steel plate shear wall", Steel Compos. Struct., 22(4), 915-935. https://doi.org/10.12989/scs.2016.22.4.915.
- Guo H. (2005), "Shear lag effects on welded hot-rolled steel channels in tension", Master Thesis, Faculty of Graduate Studies and Research in Partial Fulfillment of Requirements, The Uinversity of Alberta.
- Han, Y.L., Li, Q.S., Li, A.Q., Leung, A.Y.T. and Lin, P.H. (2003), "Structural vibration control by shape memory alloy damper", Earthq. Eng. Struct. Dyn., 32, 438-494. https://doi.org/10.1002/eqe.243.
- Haque, A.R. and Alam, M.S. (2017), "Hysteretic behaviour of a piston based self-centering (PBSC) bracing system made of superelastic SMA bars-a feasibility study", Struct., 12, 102-114. https://doi.org/10.1016/j.istruc.2017.08.004.
- Hooshmand, M., Rafezy, B. and Khalil, A.J. (2013), "Study of seismic behaviour in steel structures by using of combination braces of steel and SMA", J. Civil Environ. Eng. (Univ. Tabriz), 43(3), 11-22.
- Hu, J.W. (2014), "Investigation on the cyclic response of superelastic Shape Memory Alloy (SMA) slit damper devices simulated by quasi-static Finite Element (FE) analyses", Mater., 7(2), 1122-1141. https://doi.org/10.3390/ma7021122.
- Hu, J.W., Noh, M.H. and Ahn, J.H. (2018), "Experimental investigation on the behavior of bracing damper systems by utilizing metallic yielding and recentering material devices", Adv. Mater. Sci. Eng., 2018, Article ID 2813058. https://doi.org/10.1155/2018/2813058.
- Issa, A. and Alam, M.S. (2020), "Comparative seismic fragility assessment of buckling restrained and self-centering (friction spring and SMA) braced frames", Smart Mater. Struct., 29(5), 055029. https://doi.org/10.1088/1361-665x/ab7858
- Jaber, M.B., Smaoui, H. and Terriault, P. (2008), "Finite element analysis of a shape memory alloy three-dimensional beam based on a finite strain description", Smart Mater. Struct., 17(4), 045005. https://doi.org/10.1088/0964-1726/17/4/045005
- Kim, J., Kim, M. and Eldin, M.N. (2017), "Optimal distribution of steel plate slit dampers for seismic retrofit of structures", Steel Compos. Struct., 25(4), 473-484. https://doi.org/10.12989/scs.2017.25.4.473.
- Lee, C.H., Ju, Y.K., Min, J.K., Lho, S.H. and Kim, S.D. (2015), "Non-uniform steel strip dampers subjected to cyclic loadings", Eng. Struct., 99, 192-204. https://doi.org/10.1016/j.engstruct.2015.04.052.
- Lee, C.H., Lho, S.H., Kim, D.H., Oh, J. and Ju, Y.K. (2016). (2016), "Hourglass-shaped strip damper subjected to monotonic and cyclic loadings", Eng. Struct., 119, 122-134. https://doi.org/10.1016/j.engstruct.2016.04.019.
- Lee, J. and Kim, J. (2015), "Seismic performance evaluation of moment frames with slit-friction hybrid dampers", Earthq. Struct., 9(6), 1291-1311. https://doi.org/10.12989/eas.2015.9.6.1291.
- Lee, M.H., Oh, S.H., Huh, C., Oh, Y.S., Yoon, M.H. and Moon, T.S. (2002), "Ultimate energy absorption capacity of steel plate slit dampers subjected to shear force", Steel Struct., 2, 71-79.
- Liu, Y., Guo, Z., Liu, X., Chicchi, R. ad Shahrooz, B. (2019), "An innovative resilient rocking column with replaceable steel slit dampers: Experimental program on seismic performance", Eng. Struct., 183, 830-840, https://doi.org/10.1016/j.engstruct.2019.01.059.
- Mahin, S.A. (1998), "Lessons from damage to steel buildings during the Northridge earthquake", Eng. Struct., 20(4-6), 261-270. https://doi.org/10.1016/S0141-0296(97)00032-1.
- Mahmoudi, M., Montazeri, S. and Abad, M.J.S. (2018), "Seismic performance of steel X-knee-braced frames equipped with shape memory alloy bars", J. Constr. Steel Res., 147, 171-186. https://doi.org/10.1016/j.jcsr.2018.03.019.
- Mccormick, J., Desroches, R. and Terriault, P. (2007), "Testing of superelastic recentering pre-strained braces for seismic resistant design", J. Earthq. Eng., 11, 1-17. https://doi.org/10.1080/13632460601031326.
- McCormick, J., DesRoches, R., Fugazza, D. and Auricchio, F. (2007), "Seismic assessment of concentrically braced steel frames with shape memory alloy braces", J. Struct. Eng., 133(6), 862-870. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:6(862).
- McCormick, J., DesRoches, R., Fugazza, D. and Auricchio, F. (2007), "Seismic assessment of concentrically braced steel frames with shape memory alloy braces", J. Struct. Eng., 133(6), 862-870. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:6(862).
- Miller, D.J., Fahnestock, L.A. and Eatherton, M.R. (2012), "Development and experimental validation of a nickel-titanium shape memory alloy self-centering buckling-restrained brace", Eng. Struct., 40, 288-298. https://doi.org/10.1016/j.engstruct.2012.02.037.
- Mirtaheri, M., Sehat, S. and Nazeryan, M. (2018), "Improving the behavior of buckling restrained braces through obtaining optimum steel core length", Struct. Eng. Mech., 65(4), 401-408. https://doi.org/10.12989/sem.2018.65.4.401.
- Mirtaheri, S.M., Nazeryan, M., Bahrani, M.K., Nooralizadeh, A., Montazerian, L. and Naserifard, M. (2017), "Local and global buckling condition of all-steel buckling restrained braces", Steel Compos. Struct., 23(2), 217-228. https://doi.org/10.12989/scs.2017.23.2.217.
- Naeem, A., Nour Eldin, M., Kim, J. and Kim, J. (2017), "Seismic performance evaluation of a structure retrofitted using steel slit dampers with shape memory alloy bars", Int. J. Steel Struct., 17(4), 1627-1638. https://doi.org/10.1007/s13296-017-1227-4.
- Noureldin, M., Naeem, A. and Kim, J. (2018), "Life-cycle cost evaluation of steel structures retrofitted with steel slit damper and shape memory alloy-based hybrid damper", Adv. Struct. Eng., 22(1), 3-16. https://doi.org/10.1177/1369433218773487
- Oh, S.H., Kim, Y.J. and Ryu, H.S. (2009), "Seismic performance of steel structures with slit dampers", Eng. Struct., 31(9), 1997-2008. https://doi.org/10.1016/j.engstruct.2009.03.003.
- Olsen, J.S., Van der Eijk, C. and Zhang, Z.L. (2008), "Numerical analysis of a new SMA-based seismic damper system and material characterization of two commercial NiTi-alloys", Smart Struct. Syst., 4(2), 137-152. https://doi.org/10.12989/sss.2008.4.2.137.
- Ozbulut, O.E., Roschke, P.N., Lin, P.Y. and Loh, C.H. (2010), "GA-based optimum design of a shape memory alloy device for seismic response mitigation", Smart Mater. Struct., 19(6), 065004. https://doi.org/10.1088/0964-1726/19/6/065004
- Preciado, A., Ramirez-Gaytan, A., Gutierrez, N., Vargas, D., Falcon, J.M. and Ochoa, G. (2018), "Nonlinear earthquake capacity of slender old masonry structures prestressed with steel, FRP and NiTi SMA tendons", Steel Compos. Struct., 26(2), 213-226. https://doi.org/10.12989/scs.2018.26.2.213.
- Seelecke, S., Heintze, O. and Masuda, A. (2002), "Simulation of Earthquake - Induced structural vibrations in systems with sma damping elements", Smart Struct. Mater. 2002: Damp. Isolation, 4697, 238-245. https://doi.org/10.1117/12.472678.
- Seo J., Kim, Y.C. and Hu J.W. (2015), "Pilot study for investigating the cyclic behavior of slit damper systems with recentering Shape Memory Alloy (SMA) bending bars used for seismic restrainers", Appl. Sci., 5(3), 187-208. https://doi.org/10.3390/app5030187.
- Tagawa, H., Yamanishi, T., Takaki, A. and Chan, R.W.K. (2015), "Cyclic behavior of seesaw energy dissipation system with steel slit dampers", J. Constr. Steel Res., 117, 24-34. https://doi.org/10.1016/j.jcsr.2015.09.014.
- Takeuchi, T., Nakamura, H., Kimura, I., Hasegawa, H., Saeki, E. and Watanabe, A. (2004), "Buckling restrained braces and damping steel structures", Google Patents.
- Tremblay, R. and Christopoulos, C. (2012), "Self-centering energy dissipative brace apparatus with tensioning elements", U.S. Patent No. 8,250,818, Patent and Trademark Office, Washington, DC, U.S.
- Tremblay, R. and Robert, N. (2001), "Seismic performance of low-and medium-rise chevron braced steel frames", Can. J. Civil Eng., 28(4), 699-714. https://doi.org/10.1139/l01-038.
- Tremblay, R., Archambault, M.H. and Filiatrault, A. (2003), "Seismic response of concentrically braced steel frames made with rectangular hollow bracing members", J. Struct. Eng., 129(12), 1626-1636. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:12(1626).
- Wada, A., Huang, Y.H., Yamada, T., Ono, Y., Sugiyama, S., Baba, M. and Miyabara, T. (1997), "Actual size and real time speed tests for hysteretic steel damper", Proc. Stessa, 97, 778-785.
- Wang, W., Fang, C., Zhang, A. and Liu, X. (2019), "Manufacturing and performance of a novel self-centring damper with shape memory alloy ring springs for seismic resilience", Struct. Control Hlth. Monit., 26, e2337. https://doi.org/10.1002/stc.2337.
- Yanfeng, Z. and Songye, Z. (2008), "Seismic response control of building structures with superelastic shape memory alloy wire dampers", J. Eng. Mech., 134(3), 240-251. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:3(240).
- Zareie, S., Issa, A.S., Seethaler, R.J. and Zabihollah, A. (2020), "Recent advances in the applications of shape memory alloys in civil infrastructures: A review", Struct., 27, 1535-1550. https://doi.org/10.1016/j.istruc.2020.05.058.
- Zhu, S. and Zhang, Y. (2007), "Seismic behaviour of self-centring braced frame buildings with reusable hysteretic damping brace", Earthq. Eng. Struct. Dyn., 36(10), 1329-1346. https://doi.org/10.1002/eqe.683.