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Abstract 
 

Genome-wide association studies (GWAS) aim to find the significant genetic variants for 
common complex disease. However, genotype data has privacy information such as disease 
status and identity, which make data sharing and research difficult. Differential privacy is 
widely used in the privacy protection of data sharing. The current differential privacy 
approach in GWAS pays no attention to raw data but to statistical data, and doesn’t achieve 
equilibrium between utility and privacy, so that data sharing is hindered and it hampers the 
development of genomics. To share data more securely, we propose a differential privacy 
preserving approach of data sharing for GWAS, and achieve the equilibrium between privacy 
and data utility. Firstly, a reasonable disturbance interval for the genotype is calculated based 
on the expected utility. Secondly, based on the interval, we get the Nash equilibrium point 
between utility and privacy. Finally, based on the equilibrium point, the original genotype 
matrix is perturbed with differential privacy, and the corresponding random genotype matrix is 
obtained. We theoretically and experimentally show that the method satisfies expected privacy 
protection and utility. This method provides engineering guidance for protecting GWAS data 
privacy. 
 
 
Keywords: Genome-wide association studies, differential privacy, Nash equilibrium, 
chi-squared test 
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1. Introduction 

In the genomic era, people desire to reveal the genetic basis of diseases so that we can have 
genetic therapy for some diseases. By statistical comparison of large number of samples across 
the genome, bioinformaticians discover the effects of genetic variations on certain diseases. 
This type of research is called a genome-wide association study (GWAS). The genetic 
variation mentioned here mainly refers to single nucleotide polymorphism (SNP), which is the 
point mutations in one nucleotide of a genetic sequence [1]. Then geneticists perform the 
case-control study to explore the top-k most relevant SNPs to a disease [2-7]. It is undeniable 
that sharing these genomic data is critical to the progress of GWAS as it could result in new 
scientific discoveries. However, the privacy risk is a big challenge during genomic data 
sharing. A survey demonstrated over half of participants would not publicly share their 
genome on the web even for research purposes [8]. Malicious attackers can infer individual’s 
identity, genotypes in some special loci, disease status and gene information of one’s family 
member [10-12]. Therefore, how to share the genomic data without compromising privacy is 
an immediate and pressing issue. 

Due to privacy concerns, to overcome the privacy bottle-neck in genome-wide 
association studies, five kinds of approaches are mainly used. (i) Controlled-access. Access to 
raw data is limited to a few trusted individuals. Only if the researchers go through a time 
consuming and burdensome application process, would they get raw genotype data of a 
GWAS. It is worth noting that the strict controlled-access has hampered the research practices 
[8]. The antenna systems as main part of communication systems can be useful for protect 
privacy in GWAS, and relevant antenna system security design can be used for 
reference[13-15]  (ii) Encryption. Some ways of using homomorphic encryption to protect 
data privacy have been proposed in GWAS [16-18]. However, the untrusted third party may 
leak encrypted information or decrypt data privately. (iii) De-identification. The name of 
participants will be removed to protect privacy, but other meta data such as birthdate, 
hometown and gender will not be deleted because these are useful as experimental variable. 
Actually these meta data can be used to perform link-attack to identify the participant [8]. (iv) 
Federated learning. For the large-scale distributed data analysis of GWAS, the federated 
learning method does not directly collect the data from user terminals, instead, it collects the 
latest model training updates on each terminals to avoid user privacy issues, which caused by 
local data uploads[9]. (v) Differential privacy (DP). It is a rigorous privacy preserving method 
which can quantify the privacy risk by the privacy budget, ignore the background knowledge 
of the attacker and avoid the inference attack [19-22]. For two adjacent datasets that differ in at 
most one entry, differential privacy add noises to raw dataset and output a disturbed dataset 
which has almost the same statistical result as the raw dataset, so that the two datasets are 
indistinguishable to any adversary. Therefore, the adversary cannot judge whether the 
individual exists in the database by only the statistical value difference.  

Unfortunately, most DP approaches for protecting privacy in GWAS mainly focus on 
output statistic data, such as allele frequency, p-values, not the genotype data, so the raw 
format genotype data privacy still can’t be resolved. Moreover, the equilibrium between utility 
and privacy of processed data is still difficult to achieve. If the disturbance is so much, the 
utility will be affected a lot, and the statistical result will not be within the reasonable error 
range. If the disturbance is not enough, the disturbed data may be very close to the original 
data, so that the privacy protection is not enough, which may lead to fewer volunteers donating 
their genotype data. The equilibrium between utility and privacy is what we focus on. 
Obviously, Nash Equilibrium can help us to find the equilibrium point. 
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For GWAS data sharing, we propose a differential privacy preserving GWAS data 
sharing approach which is satisfied with Nash equilibrium. We call the approach as NEDP 
(Nash equilibrium and differential privacy). The NEDP approach disturbs the raw genotype 
data using Laplace mechanism or discrete Laplace mechanism and finally outputs disturbed 
genotype data with the expected utility and privacy. We compare our NEDP with the approach 
in Simmons’s paper [29]. Simmons add noises to the independent variables of the statistical 
value, which we call “independent variable perturbation” (IVP) for the sake of convenience. 
IVP was proved to achieve good data utility. In the comparison between IVP and NEDP, the 
utility of two approaches are very close, while the privacy of our approach is far better than 
IVP. Our major contributions are as follows: 

(1) We construct a differential privacy preserving model of genotype data sharing for 
GWAS, and propose NEDP approach, which uses not only Laplace mechanism but also 
discrete Laplace mechanism to find an equilibrium point between privacy and utility and then 
disturbs the raw genotype data based on the equilibrium point.  

(2) We theoretically prove that the NEDP method satisfies differential privacy and 
achieves the equilibrium between privacy and utility. The NEDP method satisfies differential 
privacy, which can resist statistical inference, so the method is robust when the sharing data is 
subjected to such inference. The scalability and the engineering feasibility of NEDP method is 
also proved by experiments to be suitable for dominant model, recessive model, and 
multiplicative model in GWAS, provided the model can be represented as a 2X2 contingency 
table.  

The remainder of the paper is organized as follows. In Section 2, we introduce the current 
privacy protection methods in GWAS. Section 3 introduces the related preliminaries of our 
approach. Section 4 shows our system model, threat model and the privacy preserving model. 
Section 5 demonstrates our NEDP approach. In Section 6, we have experimental analysis. 
Section 7 draws the conclusion of this paper.  

2. Related Work 
In Section 1, we introduce four kinds of techniques to protect privacy in GWAS. However, in 
this section, we introduce privacy protection angles based on the different sources of the data. 
The main data sources are the following three: (i) the access, storage and query of the genomic 
data, (ii) the statistical data such as p-values, the top-k most relevant SNPs and the MAFs and 
(iii) the input raw data such as genotypes or phenotypes. 

The first kind of method mainly protects the access [23] , the storage [24] and the query 
[25]  of the data. To solve the secret sharing among several independent data centers, Kamm L 
et al. [24] proposed a secure multi-party computation algorithm for a host center to construct 
case and control groups, without privacy leakage among three or more biobanks. Shringarpure 
and Bustamante [25] developed a likelihood-ratio test to avoid the re-identification attacks on 
beacons which are web servers that answer allele-presence queries. 

The second kind of method is widely used for privacy preserving in GWAS, it mainly 
protect the statistical data. Johnson and Shmatikov [26] put forward a differential privacy 
distance-score mechanism to protect the output of the chi-squared test in GWAS. Uhler et al. 
[27] proposed a differential privacy method for the release of summary statistics in GWAS. 
Then Yu. et al. [28]extend the methods of Uhler et al. by proposing a new algorithm based on 
the exponential mechanism. Wang et al. [22] provided a software “dpTDT” to protect the 
kinship privacy in GWAS.  
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 The third kind of method is only studied in cryptography, but as analyzed in Section 1, the 
encryption method is not beneficial to data release. Protecting the input raw data with 
differential privacy should be considered so that the regulatory authorities can release the data 
with original format for researchers to perform a targeted study. Simmons and Berger [29] 
proved their “input perturbation” approach to overcome accuracy issues in the output 
perturbation, and we will prove that our approach overcomes the privacy issues in Simmons’ 
approach. Here we show the approach to release the original format data for GWAS with the 
equilibrium between personal privacy and data utility. 

3. Preliminaries 
In this section, we introduce the preliminaries about GWAS, differential privacy, chi-squared 
test and Nash Equilibrium. In Table 1, we give the explanations of some notations used in this 
paper. 

 
Table 1. Definition of notations. 

Notations Definitions 
2χ  Chi-squared value of orginal genotype dataset 

2
,vαχ  

The critical chi-squared value within the significance level α and 
the degree of freedom v  

2
dpχ  Chi-squared value of disturbed genotype dataset after using 

differential privacy 

M Original genotype matrix 

'M  Disturbed genotype matrix 

a The original number of genotype 0 in cases 

'a  The disturbed number of genotype 0 in cases  

a* The final equilibrium number of genotype 0 in cases 

N The total number of participants in GWAS  

m The original number of genotype 0 

n The original number of genotype 1 

α  The significance level in Chi-squared test 

EEE Expected estimation error 

 

3.1 SNP and Genotype in GWAS 
SNP. A gene is a sequence of DNA or RNA which codes for a functional protein molecule. 
We know that there are four kind of bases in DNA molecules: adenine (A), thymine (T), 
cytosine (C) and guanine (G). The DNA sequence is composed of A, T, C, G. The raw GWAS 
data often refers to the single nucleotide polymorphisms (SNPs) data on the DNA. A single 
SNP is a variation in a single nucleotide that occurs at a specific position in the genome. For 
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example, two sequenced DNA fragments from the same positions of two individuals are 
ATCGCAA and ATTGCAG, at the 3-th and 7-th base positions, the two differences C-T and 
A-G appear. We refer to those as 2 SNPs. There are two alleles for one SNP. If C nucleotide 
appears in most individuals while T in a minority of individuals, we call C a major allele and T 
a minor allele. It’s worth noting that many diseases of the human body are caused by SNPs. 
Genotype and Genetic Model. For one SNP with major C and minor T, the genotype of a 
SNP position may be CC, CT and TT. When the genetic effects of CC and CT are the same, we 
call that a dominant model and regard the CC+CT as one genotype. When the genetic effects 
of TT and CT are the same, it is in the recessive model. When the genetic effects of allele C 
and allele T are different, it is in the multiplicative model. These three genetic models are the 
main models investigated in GWAS [1].  For each genetic model, there are two genetic effects, 
and we code the pooled genotype (CC+CT or TT+CT) as 0 and the remaining genotype (TT or 
CC) as 1 [12].  Our approach applies to all three genetic models. It is generally assumed there 
are N  participants in the GWAS and both of the number of cases and controls are equal to 

2N . The number of genotype 0 is m and the number of genotype 1 is n. 
 

3.2 Pearson’s Chi-squared Statistic Test 
Suppose we want to use chi-squared test to determine if a SNP has significant effect on a 
disease, according to the assumption in Section 3.1, for the SNP with major allele C and minor 
allele T, we get observed genotype counts for the SNP as shown in Table 2. Now, let's take 
Table 2 as an example to illustrate the steps of the chi-squared test. 

(1) Establish the test hypotheses and determine the significance level 
0H  : a null hypothesis that the SNP has no significant effect on the disease.  

1H  : a hypothesis that the SNP has significant effect on the disease.  

(2) Calculate the 
2χ test statistic 

 ( )2

2

1 1

R C
ij ij

i j ij

O E
E

χ
= =

−
=∑∑  

 

(1) 

In a R C× contingency table, each cell records the observed value denoted as 
( ), , ,ijO a b c d∈  where i is the number of rows, and j is the number of columns. The expected 

theoretical value for each cell denoted as =ij i jE N N N×  where iN  is the total number of i-th 
row, jN  is the total number of j-th column and N is the total number of rows and columns in 
the table. 

(3) Determine the p-value and draw the conclusion  
For a 2 2×  contingency table, the degree of freedom is ( ) ( ) ( ) ( )1 1 2 1 2 1  = 1v R C= − × − = − × − . 

Given the significance level α and the degree of freedom v , compare the chi-squared value 
2χ  and the critical chi-squared value 2

,vαχ . When 2 2
,vαχ χ≥ , p α≤ , the 0H  hypothesis can be 

rejected, and 1H  can be accepted, so the SNP is significant for the disease. When 2 2
,vαχ χ≤ , 

p α≥ , the 0H  hypothesis can be accepted, and 1H  can be rejected, so the SNP is not 
significant for the disease. 
 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 3, March 2022                                  1033 

Table 2. Observed genotype counts for one SNP 
genotype cases controls total 

0 a c m 
1 b d n 

total 2N  2N  N 
 

3.3 Differential Privacy 
Differential privacy (DP) aims to provide methods to maximize the accuracy of queries from 
statistical databases while minimizing the chances of identifying its records. The definition 
was first proposed by Cynthia Dwork [19]. Then the concentrated differential privacy which is 
a relaxation of differential privacy without compromising on cumulative privacy loss over 
multiple computations was proposed [30]. 

We will think of a database D1 as a multiset of rows. Assuming a database D2 that differs 
in one entry from the database D1, which means D1 and D2 are adjacent databases. Then the 
definition of DP is as follows: 
Definition 1 (ε -Differential Privacy [30]). Given 0ε ≥ , a randomized algorithm M is ε - 
differentially private if for the adjacent databases D1 and D2, and for all sets 

( )( ) ( )( )1 2S Range M D Range M D⊆ ∪  

 ( ) ( )1 2Pr PrM D S e M D Sε ∈  ≤ ⋅  ∈      (2) 

That means when the mechanism M is applied to two adjacent databases D  and 'D , the 
probability that two results ( )1M D  and ( )2M D  belonging to the same range is very close. 
This mechanism protects the privacy information of any individual in database. Whether the 
individual is present in the database, the outcome of the mechanism is not changed much. We 
can assume the randomized algorithm M is a query mechanism. The ε  is called “privacy 
budget” which represents the degree of privacy protection. The smaller the ε , the higher the 
degree of privacy protection.  

Differential privacy is immune to post-processing: 
Lemma 1 (Post-Processing [31]). Let : 'F D D→ be a random mechanism that is ε - 
differentially private on dataset D. Let : ' ''f D D→  be an arbitrary randomized mapping. 
Then : ''f F D D→  is ε - differentially private. 

   Before we introduce Laplace Mechanism (LM) and discrete Laplace mechanism (DLM) , 
we first show sensitivity, which is an important parameter that will determine the max 
difference under a same query function for two adjacent databases. 
Definition 2 (Sensitivity). Let : n kf D R→ , for two adjacent databases 1 2, nD D D∈ , the 
sensitivity of the query function f  is 

 ( ) ( )1 2 1
maxf f D f D∆ = −  (3) 

The sensitivity f∆  captures the max difference caused by an individual’s data between 
two adjacent databases. With the max difference, we can be able to know the upper bound of 
how much we must perturb the function’s output to preserve privacy. 
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Definition 3 (Laplace Mechanism). Given any function : n kf D R→ , for a database D as 
a multiset of rows , the Laplace mechanism is defined as 
 ( ) ( )1, , kf D Y Y+   (4) 

Where iY  are i.i.d random variables drawn from Laplace distribution ( )Lap f ε∆ . 
Definition 4 (Discrete Laplace Distribution [32]). A random variable Y  has the discrete 
Laplace distribution with parameter ( )0,1p∈ , denoted by DL(p), if  
 ( ) ( ) 1 , 0, 1, 2,

1
k

p
pf k Y k p k R
p

−
= Ρ = = ∈ = ± ±

+
 

(5) 

Definition 5 (Discrete Laplace Mechanism). Given any function : n kf D R→ , for a database 
D as a multiset of rows , the discrete Laplace mechanism is defined as 
 ( ) ( )1, , kf D Y Y+   (6) 

Where iY  are i.i.d random variables drawn from discrete Laplace distribution DL(p), 
1 bp e−= , and b f ε= ∆ . 

 
3.4 Nash Equilibrium 
Let ( ),S U  be a game with n players, where iS  is the strategy set for player i, 

1 2 nS S S S= × × ×  is the set of strategy profiles and ( ) ( ) ( )( )1 , , nU x U x U x= 

 is its payoff 

function evaluated at x S∈ . Let ix  be a strategy of player i and ix−  be a strategy profile of 

all players except for player i. When each player { }1, ,i n∈ 

 chooses strategy ix  resulting in 

strategy profile ( )1, , nx x x=   then player i obtains payoff ( )iU x . A strategy profile x S∗ ∈  
is a Nash equilibrium if no unilateral deviation in strategy by any single player is profitable 
for that player, that is 

 ( ) ( ), : , ,i i i i i i i ii x S U x x U x x∗ ∗ ∗
− −∀ ∈ ≥  (7) 

Informally, a strategy profile is a Nash equilibrium if no player can do better by unilaterally 
changing his or her strategy. 

    
Fig. 1. System and threat models for sharing GWAS original genotype data 
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4. Models and Design Goal 

4.1 System Model 
We consider a system which contains GWAS participants (the cases and the controls), a 
service provider (SP), the GWAS researcher and malicious adversary as shown in Fig. 1. The 
SP can be a direct-to-customer genomic company, a hospital or a genome research institute 
which collect genome data from customers or volunteers. The cases and the controls group 
send their biological sample such as blood and saliva to the SP, then their chemical DNA will 
be extracted and be used to perform genome sequencing. We assume the study is about the 
significance of one SNP for one disease, and the allele of the study SNP is T and C. After 
sequencing, a document with raw genotype data information of participants is produced, along 
with an analysis report. The genotype is digitalized as 0 or 1 (see in Section 3.1) and stored in 
the database of the SP. For the scientific progress, most of SPs will share the genomic data to 
researchers. For the protection of personal identity, the name will be replaced by a serial 
number (individual ID).  The publicly accessible databases attract more researchers such as 
geneticists, bioinformaticians or demographers, which use these data for genetics and 
genomics studies. 

4.2 Threat Model 
Fig. 1 also shows the threat model for sharing GWAS original genotype data. Here, we assume 
that all GWAS participants and researchers are rational. The rational participants wish to 
achieve expected utility and the rational researchers wish to achieve expected privacy. Threats 
mainly come from malicious adversaries or some honest but curious researchers. Fig. 2 shows 
four kinds of attack. Once the attack is successful, serious consequences such as genetic 
discrimination and blackmails occur. 
 

 
Fig. 2. Overview of threat in GWAS original genotype data sharing 

 

As shown in Fig. 2, the GWAS genotype data can be used to perform four privacy attacks. 
Thus, when genotype data is shared by volunteers or service providers, the data should be 
pre-processed for privacy. With the goal of wide-spread data sharing and privacy preserving, 
we apply the differential privacy on genotype data to release protected disturbed data with 
expected data utility and privacy. 
 



1036                                                                Yan et al.: A Differential Privacy Approach to Preserve GWAS Data Sharing  
based on A Game Theoretic Perspective 

 
Fig. 3. Privacy preserving model of NEDP 

 

4.3 Design Goal 
Now we want to release disturbed genotype data by our approach to promote the genetics and 
genomics studies. Firstly, we will use anonymity tecnology in metadata, as shown in Fig. 3. 
After data generalization, the birthdate and zipcode is protected so that it’s hard to use 
inference attack. Now we consider how to protect the genotype data. We know that GWAS 
participants expect that attackers cannot infer their identity from disturbed genotype data, and 
they want privacy protection to be the largest. The researchers hope that the data utility of the 
disturbed genotype data will be guaranteed, and the GWAS statistics will remain the original 
statistical significance. The problem is to find the Nash equilibrium point between utility and 
privacy. 

As shown in Fig. 3, the raw genotype data correspond to the observed genotype counts 
table. In a GWAS, to ensure the consistency of the total amount of data, the total number and 
the total cases or controls number can’t be changed, so if we disturb the raw data, we will get a 
new counts table with a', b', c' and d'. Note that this means after using the differential privacy 
mechanisms, we should make sure the number of genotype 0 in cases is a' while in controls is 
b', the number of genotype 1 in cases is c' while in controls is d' . Therefore, the disturbance to 
the original data is equivalent to finding the right a', b', c' and d'. We know that if the “a'” is 
determined, then other three cells “b', c', d' ” in the table can also be calculated, so the problem 
boils down to finding an appropriate Nash equilibrium point 

*'a a=  -- the new number of 
genotype 0 in cases. After we find the appropriate Nash equilibrium point 

*'a a= , we can add 
noises to change the number of genotype 0 in cases from a to a'.     

How to find the Nash equilibrium point *a  ? We know individuals are concerned about 
their privacy and the researchers care about the utility after disturbed. As we can see, this is a 
game between participants and researchers while their payoff is privacy and utility, 
respectively, so we should define the expected privacy and utility (see in Section 4.4), then 
based on that, we give the strategy, the Nash equilibrium point *a , for participants and 
researchers. 
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4.4 Utility and Privacy Metrics 
Utility metric. In GWAS, researchers care about the p-value of the significant SNP (see in 
Section 3.2), so we take the p-value as the utility metric. We know each 2χ  corresponding to a 
p-value, so we control the range of p-values by controlling the range of disturbed chi-squared 
values. In Table 2 , we can get the original test statistic of the SNP is: 
 ( ) ( ) ( ) ( )2 2 2 2

2 2 2 2 2
=

a m b n a m N a n
m n m n

χ
− − − − −

+ = +  
(8) 

Privacy metric. To demonstrate the extent of privacy protection, we use the expected 
estimation error (EEE) [33] as privacy metric. In our mechanism, we have the noise Y, for raw 
database D  and the disturbed database 'D  , the error measures the deviation between D  and 

'D . It is defined as follows: 

 ( )1
'D

i i ii
EEE P Y D D

=
= −∑  (9) 

Where ( )iP Y  is the probability of noise iY  which is added to iD , D  is the size of genotype 

database D , '
i iD D−  is the absolute value of the corresponding element difference. The EEE 

intuitively shows the degree of disturbance. The larger the EEE is, the more disturbance we get, 
the higher the privacy is. 

5. Proposed NEDP Approach 
In this section, we propose the NEDP approach to disturb the raw genotype matrix to a new 
genotype matrix with the expected utility and privacy. We first use the 2χ  to constraint the 
interval of a', then use EEE and p-value to define which a' should be chosen as the Nash 
equilibrium point. Now we show how to transform the genotype data into a genotype matrix, 
then we illustrate the processing steps for the algorithm. 

5.1 Genotype matrix in NEDP 
In Section 3.2, we show the Table 2 which is a statistical table for GWAS with N participants. 
We abstract the raw genotype matrix. We define a 2 2N ×  matrix M. Two columns represent 
cases and controls, respectively. Actually, M is composed of four block matrices differed in 
size. The raw genotype matrix is 
 11 12

21 22

M M
M

M M
 

=  
 

 
(10) 

Where 11 1aM O ×= , 12 1cM O ×= , 21 1bM I ×=  and 22 1dM I ×= . And O are zero matrix while all 
elements of I are 1, respectively. The 11M  corresponding to the a cases of genotype 0. The  

12M corresponding to the c controls of genotype 0. The 21M  corresponding to the b cases of 
genotype 1. The 22M  corresponding to the d controls of genotype 1. If we give the raw 
genotype matrix M, we can get the N, a, m, n. If we give the N, 'a  , m, n, the new genotype 
matrix is obtained by using the differential privacy protection approach satisfying Nash 
equilibrium.  
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5.2 Find the equilibrium point *a  
In order not to affect the data utility after the disturbance, we should guarantee the disturbed 
test statistic will remain the original statistical significance. It’s important to note that when 
the SNP is significant, after disturbing, its chi-squared value 2

dpχ  may be much larger than the 

original 2χ , so we control the upper bound as 2
,vαχ  to avoid too much perturbance and to 

ensure data controllability. Thus, we have 

 ( ) ( )2 2
2 2 ' 2 '

=dp

a m N a n
m n

χ
− − −

+  
(11) 

 2 2 2
,dp vαχ χ χ> >  (12) 

From Equation (11) and Inequality (12), we can solve ( ) ( )1 2 3 4' , ,a a a a a∈ ∪ . We have 
2

1
1 2

m m C
a

− −
= , 

2
2

2 2

m m C
a

− −
= , 

2
2

3 2

m m C
a

+ −
= , 

2
1

4 2

m m C
a

+ −
=  

 where 2 2
1C m nm Nχ= − , 2 2

2 ,vC m nm Nαχ= − .  

Choose the equilibrium point for the disturbed matrix. When we calculate the range of 'a , 
there are two intervals ( ) ( )1 2 3 4, , ,a a a a  because of the inequation 2 2 2

,dp vαχ χ χ> > . According 
to Section 4.4, the greater the difference between 'a  and the original a, the more the 
perturbation and the better the privacy protection effect. Thus, we should choose the interval 
that is far from the original value a.  Similarly, because the chi-squared value is a quadratic 
function of 'a , when 'a  is closer to the boundary point, the chi-squared value 2

dpχ  is closer to 

the original boundary chi-square value 2χ . Thus, we get *
1= +1a a  (when original a is far from 

( )1 2,a a ) or *
4= 1a a − (when original a is far from ( )3 4,a a ). 

5.3 Disturb the raw genotype matrix 

After we find the equilibrium point *a , we add noises to the raw genotype matrix M  by 
column and then get 'M . We have 

 
( ) 11 12

21 22

' '

' '
' + mod 2

M M
M round M Y

M M

 
= =  

  
 

(13) 

Where 11 * 1
'

a
M O

×
= , 12 *c 1

'M O
×

= , 21 * 1
'

b
M I

×
=  and 22 * 1

'
d

M I
×

= . The 11
'M  corresponds to the  

*a cases of genotype 0. The 12
'M corresponds to the * *c m a= −  controls of genotype 0. The 

21
'M  corresponds to the * *2b N a= −  cases of genotype 1. The 22

'M  corresponds to the 
* *2d N m a= − +  controls of genotype 1. 

The disturbed matrix is not available unless we normalize the data into {0,1} because the 
genotype is 0 or 1. For each noise y Y∈ , we need to make ijM y+  be an integer and belong to 
{0,1}. Considering the discreteness of genotype, we also use discrete Laplace mechanism to 
get better utility. The noises are discrete integers so we don’t need the rounding operation, but  
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need the modular arithmetic to let ijM y+  belong to {0,1}. When we convert each result after 
adding noises to an integer, the method here can be ceil operation, floor operation, or rounding 
operation. However, noise is already a disturbance, so we want to reduce the disturbance as 
much as possible, only the result of the rounding operation is more close to the original value, 
the disturbance is smaller, and the data utility is relatively better, so we choose the rounding 
operation to limit the value to {0, 1}. 

In Algorithm 1, we first calculate the original chi-square value 2χ , and we assume the 
disturbed chi-squared value 2

dpχ , which is discussed in Section 5.2. Then we calculate the 

range of 'a  and choose the equilibrium point *a  from 'a  based on Section 5.2. In Step 3, we 
generate noises Y  which will be used on the orginal genotype metrix M . Then we add noises 
to M . When the first column 1*M  is determined, the second column can be calculated. So in 
Step 4, we add the noises Y to 1jM -- the j-th value of the first column of M , and the goal is to 

make the  number of genotype 0 in 1*M  is *a . We use Numa to count the number of genotype 
0 in the disturbed 1j 'M , while Numb is to count the number of genotype 1 in the disturbed 

1j 'M . To get Numa = *a , we will judge if the noise iY  can make 1j ' 0M =  under the 

constraints of condition NUMa < *a , if it can, we will add the iY  to 1jM , else we will judge if 

iY  can make 1j ' 1M =  under the constraints of condition NUMb < N/2- *a , if it can, we will 
also add the iY  to 1jM . However, when the noise iY  cannot satisfy the two judgements, we 
will discard the noise iY and choose the next noise 1iY + . After selecting the noises and 
conducting post-processing operations such as rounding and modular arithmetic, we get the 
disturbed genotype matrix 'M , and then output it. 

Algorithm 1. The ε - differentially private algorithm for releasing the genomic data with 
expected utility and privacy in NEDP. 

Input: The raw genotype matrix M  

Output: The disturbed genotype matrix 'M  which has the expected 2χ 、 p-value and EEE. 

Global: Privacy budget ε , sensitivity f∆ , and the significance  critical value 2
,vαχ . Total 

number N of individuals, the number a of genotype 0 in cases, the total number m of 
genotype 0, the total number n of genotype 1.  

1. Function Calculate_Chi (N, a, m, n): 

   ( ) ( ) ( ) ( )2 2 2 2
2 2 2 2 2
=

a m b n a m N a n
m n m n

χ
− − − − −

+ = + , ( ) ( )2 2
2 2 ' 2 '

=dp

a m N a n
m n

χ
− − −

+  

2. Choose the equilibrium point *a : 

let 2 2 2
,dp vαχ χ χ> >  to calculate ( ) ( )1 2 3 4' , ,a a a a a∈ ∪ ; 

if  original a is far from ( )1 2,a a , let *
1= +1a a ; 
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The NEDP algorithm is as follows. The function name followed by parameters.  

There are two obvious problems which are solved through our approach: (i) It guarantees 
the accuracy of GWAS outcome from the disturbed data set, which means that the utility 
should not loose much and the disturbance should not be excessive, (ii) It balances the 
privacy-preserving level and the utility of the data set to satisfy both GWAS participants and 
researchers. For the first problem, we use the Inequality (12) to constraint the utility. For the 
second problem, we introduce the game theory to realize the equilibrium between utility and 
privacy. 

6. Experimental Analysis 
We firstly show NEDP approach and analyze the privacy and utility in the approach. We will 
use discrete Laplace mechanism (DLM) and Laplace mechanism (LM) in NEDP, and we call 
NEDP with DLM as NEDPD and NEDP with LM as NEDPL. Then we  perform a comparison 
analysis between independent variable perturbation (IVP) [29] and our NEDPD and NEDPL 
approach.  
Data set. We use synthetic dataset based on genotypes of chromosome 22 in the 1000 genome 
project (phase 3). We get 200N = participants with 2N  cases and 2N  controls, the 
number of genotype 0 in cases is 89a = , the total number of genotype 0 is 123m = , the total 
number of genotype 1 is 77n = , then we get 2 11b N a= − = , 34c m a= − = , 

2 66d N c= − = , so we have the contingency table (Table 4). The raw genotype matrix M  
with 11 89 1M O ×= , 12 34 1M O ×= , 21 11 1M I ×=  and 22 66 1M I ×= .  

else if original a is far from ( )3 4,a a , let *
4= 1a a − ; 

return { }*
1 4+1, 1a a a∈ −  

3. Function GenerateNoise(ε , f∆  )  

Suppose the size of noises Y is k. 

for i =1 : k ,  generate noise Y(i), and the probability P(i) of each random noise  

4.  Function Imnoise ( M , Y, P, *a , N,m,n ) 

        Initialize NUMa=0, NUMb=0, j=0,i=0; 

        while NUMa+NUMb<N/2  

( )1j= + mod 2is round M Y  

                   if 0s =  && NUMa< *a ,  1 'jM s= , Numa++,  j++; 

                  else if  1s = && NUMb<N/2- *a , 1 'jM s= , Numb++,  j++; 

            i++; 

     return ( )'= + mod 2M round M Y  
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Table 4. The contingency table in the GWAS experiment 
genotype cases controls total 

0 89 34 123 
1 11 66 77 

total 100 100 200 
 
Calculate the chi-squared value and the Choose the equilibrium point *a  . For the 2 2×  
contingency table, the critical value is 2 2

, 0.05,1= =3.84vαχ χ . The test statistic 2 =63.879χ  and the 
p-value is 151.3229 10−× . These illustrate the SNP makes a lot of sense for the disease. We 
calculate the interval of 'a  is ( ) ( )34,55 68,89∪ . According to section 5.2, we should 
choose the interval that is far from the original value =89a . The interval (34,55) has greater 
deviation than the interval (68,89), so we just consider the interval (34,55). In NEDP, we 
choose * =34+1a . The following figures will contain all interval, just for intuitive and 
comprehensive understanding. In practical application, we should know that just * =34+1a  can 
be chosen. 
Utility analysis. Here we show the p-value and the chi-squared value for each 'a  in Fig. 4(a). 
We find all the p-values are smaller than the significant level =0.05α , and all the chi-squared 
values are larger than 2 2

, 0.05,1= =3.84vαχ χ , which means whichever 'a  we choose, it satisfied 
the expected utility--the SNP after disturbance still remains significant. We use scatter 
diagram so that there is a line segment in (55,68), actually it is meaningless. Because the 
Equation (8) is a quadratic equation, so the p-values are distributed symmetrically between 
these two intervals ( ) ( )34,55 68,89∪ . 

 
                                        (a)                                                                            (b) 

Fig. 4. Utility and privacy using NEDP  
 

Privacy analysis. After we guarantee the utility, we should consider the privacy metric EEE -- 
the expected estimation error. Each 'a  corresponds to different matrix 'M . EEE shows the 
difference between M  and 'M . Fig. 4(b) shows the relationship between 'a  and EEE. We 
can see intuitively that whether in NEDPD or in NEDPL, the more deviation between 'a  and 

=89a , the larger the EEE. Essentially the greater the deviation between 'a  and the original 
value a , the larger the EEE. 
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Equilibrium between utility and privacy. In Fig. 4(a), when '=35a , the p-value and 
chi-squared value are the closest to original p-value and chi-squared value, so when '=35a we 
set the payoff of utility as 1, and the other as 0. In Fig. 4(b), under NEDPD and NEDPL , we 
choose any user defined ε , are found that the largest EEE is when '=35a . For patients, the 
highest EEE is their expected privacy. Thus, we set the payoff of privacy as 1 when '=35a , 
and the others are 0. We get a payoff matrix shown in Table 5. Here ( )1 2,u u  represents the 
payoff of utility and privacy. 
 

Table 5. The payoff matrix between utility and privacy 
(u1, u2) 35 

  54 

35 (1,1) (1,0) (1,0) 
  (0,1) (0,0) (0,0) 
54 (0,1) (0,0) (0,0) 

Actually the patients and the researchers should choose the same 'a  when we publish the 
genotype database, so here we just consider the payoff on the diagonal. When researchers and 
patients choose * =35a , both of them receive the expected utility and expected privacy. Thus, 

* =35a  is a Nash equilibrium point in this example. We disturb the Table 4 to Table 6 and 
choose the genotype matrix 'M  when * =35a  in NEDPD or NEDPL with expected ε . 

 
Table 6. The contingency table about the significant SNP after our approach 

genotype cases controls total 

0 35 88 123 
1 65 12 77 

total 100 100 200 
 

 
 (a)                                                                         (b) 

Fig. 5. Utility and privacy comparison between NEDP and IVP 
 

Comparison between our approach and IVP. In Section 3.6 of Simmons’s paper [29], they 
denoted the independent variables of the statistical test value (corresponding to the 2χ  in this 
paper) by x and y (corresponding to the “a” in this paper), then they made 

( )dpx x Lap f ε= + ∆  as well as y,  so ( ),dp dpx y is a ε - differentially private estimate of 

( ),x y . For convenience, we refer to that as independent variable perturbation (IVP). IVP 
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achieves good data utility, but IVP did not conduct privacy analysis. Here we compare the 
utility and the privacy between NEDP and IVP. Firstly, we show the utility comparison – 
p-values and chi-squared values of IVP and NEDP in Fig. 5(a).  In IVP, different ε will lead 
to different  'a  , each 'a   lead to different chi-squared values and p-values. In NEDP, when the 
original 89=a , we already calculate the 35* =a  , so the chi-squared values and p-values are 
also fixed, depending on  35* =a . Here we choose  ε  from 0.01 to 5, and calculate the 
chi-squared values and p-values when the original 89=a . As we can see, the chi-squared 
values of IVP and NEDP are very close to original chi-squared value 879.632 =χ , and still 
larger than the significance level. As a result, both IVP and NEDP have met our highest 
expectations for utility. 

 Then we show the privacy comparison between our approach and IVP. In Fig. 5(b), the 
EEE of IVP is obviously smaller than that of our approach, which means our approach for 
privacy protection is better, whether in NEDPD or NEDPL. IVP method is enough to release 
the statistical value of SNP, but the perturbation of raw data is very small, therefore, that it’s 
privacy for protecting genotype data is not so good. We also find that when ε  is small, the 
EEE of NEDPD is larger than NEDPL, which means that the privacy of NEDPD is better than 
NEDPL. However, when ε increases, the EEE of NEDPD and NEDPL are close. 

7. Conclusion 
To share disturbed genotype data without compromising participants’ privacy, this paper 
proposes a differential privacy preserving approach by adding noises to raw data, and also 
guarantees the equilibrium between privacy and data utility. In GWAS, for the 2 2×  
contingency table such as Table 2, the Nash equilibrium point(s) *a  between utility and 
privacy can be found in NEDP. According to our experimental results on synthetic data, the 
disturbed genotype data generated by * =35a  satisfied expected p-value and EEE.Moreover, 
we find that the perturbance of discrete Laplace mechanism is more than Laplace mechanism, 
and the data privacy of NEDPD is better than NEDPL when ε  is small, especially in the range 
of (0, 2). In addition, we compare our approach with IVP approach and found out that IVP has 
poor privacy protection and it’s EEE is much lower than our approach. Our approach can also 
be used to perturb data and prevent privacy attacks on other bioinformatics data that can be 
represented by 2 2×  contingency tables, promoting the data sharing and research of 
bioinformatics and biostatistics. 
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