DOI QR코드

DOI QR Code

Biological Efficacy of Endophytic Bacillus velezensis CH-15 from Ginseng against Ginseng Root Rot Pathogens

인삼내생균 Bacillus velezensis CH-15의 인삼뿌리썩음병 방제 효과

  • Kim, Dohyun (Department of Applied Biology, Dong-A University) ;
  • Li, Taiying (Department of Applied Biology, Dong-A University) ;
  • Lee, Jungkwan (Department of Applied Biology, Dong-A University) ;
  • Lee, Seung-Ho (Ginseng Research Division, National Institute of Horticultural and Herbal Science)
  • 김도현 (동아대학교 응용생물공학과) ;
  • ;
  • 이정관 (동아대학교 응용생물공학과) ;
  • 이승호 (국립원예특작과학원 인삼특작부)
  • Received : 2022.02.24
  • Accepted : 2022.03.22
  • Published : 2022.03.31

Abstract

Ginseng is an important medicinal plant cultivated in East Asia for thousands of years. It is typically cultivated in the same field for 4 to 6 years and is exposed to a variety of pathogens. Among them, ginseng root rot is the main reason that leads to the most severe losses. In this study, endophytic bacteria were isolated from healthy ginseng, and endophytes with antagonistic effect against ginseng root rot pathogens were screened out. Among the 17 strains, three carried antagonistic effect, and were resistant to radicicol that is a mycotoxin produced by ginseng root rot pathogens. Finally, Bacillus velezensis CH-15 was selected due to excellent antagonistic effect and radicicol resistance. When CH-15 was inoculated on ginseng root, it not only inhibited the mycelial growth of the pathogen, but also inhibited the progression of disease. CH-15 also carried biosynthetic genes for bacillomycin D, iturin A, bacilysin, and surfactin. In addition, CH-15 culture filtrate significantly inhibited the growth and conidial germination of pathogens. This study shows that endophytic bacterium CH-15 had antagonistic effect on ginseng root rot pathogens and inhibited the progression of ginseng root rot. We expected that this strain can be a microbial agent to suppress ginseng root rot.

인삼은 수천 년 동안 동아시아에서 재배된 중요한 약용 식물이다. 일반적으로 같은 포장에서 4-6년 동안 재배되기 때문에 다양한 병원균에 노출된다. 그 중 인삼뿌리썩음병이 가장 큰 피해를 주는 주요 원인이다. 본 연구에서는 건강한 인삼에서 내생균을 분리하고, 인삼뿌리썩음병원균에 대해 길항작용을 갖는 내생균을 선발하였다. 분리된 17개 균주 중, 3개 균주가 인삼뿌리썩음병원균에 길항작용을 나타냈으며 인삼뿌리썩음병균이 생산하는 곰팡이독소인 라디시콜에 내성을 보였다. 우수한 길항효과와 라디시콜 저항성을 갖는 Bacillus velezensis CH-15를 선발하여 추가 실험을 수행하였다. 인삼 뿌리에 CH-15를 접종하면 병원균의 균사 생장을 억제할 뿐만 아니라 질병의 진행도 억제하였다. CH-15는 또한 바실로마이신 D, 이투린 A, 바실리신, 서팩틴 생합성 유전자를 갖고 있었다. 또한 CH-15 배양여액은 병원균 생장과 분생포자 발아를 억제하였다. 본 연구는 내생균 CH-15가 인삼뿌리썩음병 병원체에 대해 길항작용을 하고 인삼뿌리썩음병의 진행을 억제함을 보여주었으며 이 균주가 인삼뿌리썩음병을 억제하는 미생물 제제가 될 수 있을 것으로 기대한다.

Keywords

Acknowledgement

This work was supported by the Rural Development Administration (PJ01243502) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant number 2020R1A6A1A03047729).

References

  1. Athukorala, S. N. P., Fernando, W. G. D. and Rashid, K. Y. 2009. Identification of antifungal antibiotics of Bacillus species isolated from different microhabitats using polymerase chain reaction and MALDI-TOF mass spectrometry. Can. J. Microbiol. 55: 1021-1032. https://doi.org/10.1139/W09-067
  2. Chun, J. and Bae, K. S. 2000. Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences. Antonie van Leeuwenhoek 78: 123-127. https://doi.org/10.1023/a:1026555830014
  3. Chung, A.-S., Cho, K.-J., Oh, J.-H. and Park, J. D. 2004. Pharmacological and physiological effects of ginseng. J. Korean Assoc. Cancer Prev. 9: 125-138.
  4. Chung, S., Kong, H., Buyer, J. S., Lakshman, D. K., Lydon, J., Kim, S.-D. et al. 2008. Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper. Appl. Microbiol. Biotechnol. 80: 115-123. https://doi.org/10.1007/s00253-008-1520-4
  5. Haas, D. and Defago, G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3: 307-319. https://doi.org/10.1038/nrmicro1129
  6. Handelsman, J. and Stabb, E. V. 1996. Biocontrol of soilborne plant pathogens. Plant Cell 8: 1855-1869. https://doi.org/10.1105/tpc.8.10.1855
  7. Jo, J. S., Kim, C. S. and Won, J. Y. 1996. Crop rotation of the Korean ginseng (Panax ginseng C. A. Meyer) and the rice in paddy field. Korean J. Med. Crop Sci. 4: 19-26.
  8. Kang, S. W., Yeon, B. Y., Hyeon, G. S., Bae, Y. S., Lee, S. W., Seong, N.-S. 2007. Changes of soil chemical properties and root injury ratio by progress years of post-harvest in continuous cropping soils of ginseng. Korean J. Med. Crop Sci. 15: 157-161.
  9. Kang, Y., Lee, S.-H. and Lee, J. 2014. Development of a selective medium for the fungal pathogen Cylindrocarpon destructans using radicicol. Plant Pathol. J. 30: 432-436. https://doi.org/10.5423/PPJ.NT.08.2014.0073
  10. Kim, B.-Y., Ahn, J.-H., Weon, H.-Y., Song, J., Kim, S.-I. and Kim, W.-G. 2012a. Isolation and characterization of Bacillus species possessing antifungal activity against ginseng root rot pathogens. Korean J. Pestic. Sci. 16: 357-363. https://doi.org/10.7585/kjps.2012.16.4.357
  11. Kim, O.-S., Cho, Y.-J., Lee, K., Yoon, S.-H., Kim, M., Na, H. et al. 2012b. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62: 716-721. https://doi.org/10.1099/ijs.0.038075-0
  12. Kim, Y. S., Balaraju, K. and Jeon, Y. H. 2017. Biological characteristics of Bacillus amyloliquefaciens AK-0 and suppression of ginseng root rot caused by Cylindrocarpon destructans. J. Appl. Microbiol. 122: 166-179. https://doi.org/10.1111/jam.13325
  13. Kim, H., Rim, S. O. and Bae, H. 2019. Antimicrobial potential of metabolites extracted from ginseng bacterial endophyte Burkholderia stabilis against ginseng pathogens. Biol. Control 128: 24-30. https://doi.org/10.1016/j.biocontrol.2018.08.020
  14. Kim, M. Y., Han, J. W., Dang, Q. L., Kim, J.-C., Kim, H. and Choi, G. J. 2022. Characterization of Alternaria porri causing onion purple blotch and its antifungal compound magnolol identified from Caryodaphnopsis baviensis. PLoS ONE 17: e0262836. https://doi.org/10.1371/journal.pone.0262836
  15. Lee, S.-Y., Kim, B.-Y., Ahn, J.-H., Song, J., Seol, Y.-J., Kim, W.-G. et al. 2012. Draft genome sequence of the biocontrol bacterium Bacillus amyloliquefaciens strain M27. J. Bacteriol. 194: 6934-6935. https://doi.org/10.1128/JB.01835-12
  16. Li, T., Choi, K., Jung, B., Ji, S., Kim, D., Seo, M. W. et al. 2022. Biochar inhibits ginseng root rot pathogens and increases soil microbiome diversity. Appl. Soil Ecol. 169: 104229. https://doi.org/10.1016/j.apsoil.2021.104229
  17. Park, H. J., Kim, D. H., Park, S. J., Kim, J. M. and Ryu, J. H. 2012. Ginseng in traditional herbal prescriptions. J. Ginseng Res. 36: 225-241. https://doi.org/10.5142/jgr.2012.36.3.225
  18. Park, K. J., Yu, Y. H. and Ohh, S. H. 1997. Population variations of Cylindrocarpon destructans causing root rot of ginseng and soil microbes in the soil with various moisture contents. Korean J. Plant Pathol. 13: 100-104.
  19. Park, Y.-H., Mishra, R. C., Yoon, S., Kim, H., Park, C., Seo, S.-T. et al. 2019. Endophytic Trichoderma citrinoviride isolated from mountain-cultivated ginseng (Panax ginseng) has great potential as a biocontrol agent against ginseng pathogens. J. Ginseng Res. 43: 408-420. https://doi.org/10.1016/j.jgr.2018.03.002
  20. Ryan, R. P., Germaine, K., Franks, A., Ryan, D. J. and Dowling, D. N. 2008. Bacterial endophytes: recent developments and applications. FEMS Microbiol. Lett. 278: 1-9. https://doi.org/10.1111/j.1574-6968.2007.00918.x
  21. Schulte, T. W., Akinaga, S., Murakata, T., Agatsuma, T., Sugimoto, S., Nakano, H. et al. 1999. Interaction of radicicol with members of the heat shock protein 90 family of molecular chaperones. Mol. Endocrinol. 13: 1435-1448. https://doi.org/10.1210/me.13.9.1435
  22. Song, M., Yun, H. Y. and Kim, Y. H. 2014. Antagonistic Bacillus species as a biological control of ginseng root rot caused by Fusarium cf. incarnatum. J. Ginseng Res. 38: 136-145. https://doi.org/10.1016/j.jgr.2013.11.016
  23. Song, X., Wu, H., Yin, Z., Lian, M. and Yin, C. 2017. Endophytic bacteria isolated from Panax ginseng improves ginsenoside accumulation in adventitious ginseng root culture. Molecules 22: 837. https://doi.org/10.3390/molecules22060837
  24. Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  25. Yu, Y. H. and Ohh, S. H. 1993. Research on ginseng diseases in Korea. Korean J. Ginseng Sci. 17: 61-68.