DOI QR코드

DOI QR Code

국내에서 분리된 Streptomycin 저항성 Pseudomonas syringae pv. actinidiae Biovar 3 균주에서 rpsL 유전자의 돌연변이

Mutation of rpsL Gene in Streptomycin-Resistant Pseudomonas syringae pv. actinidiae Biovar 3 Strains Isolated from Korea

  • Lee, Young Sun (Department of Biology, Sunchon National University) ;
  • Kim, Gyoung Hee (Department of Plant Medicine, Sunchon National University) ;
  • Koh, Young Jin (Department of Plant Medicine, Sunchon National University) ;
  • Jung, Jae Sung (Department of Biology, Sunchon National University)
  • 투고 : 2022.02.28
  • 심사 : 2022.03.25
  • 발행 : 2022.03.31

초록

Pseudomonas syringae pv. actinidiae (Psa)는 키위에 세균성 궤양병을 일으키는 병원균이다. Psa 균주는 유전적 및 생화학적 특징에 따라 5개의 biovar로 나누어진다. 그중 biovar 2와 3이 국내에서 발견되어 광범위한 피해를 주고 있다. Psa를 방제하는 효율적인 방법 중 한가지는 streptomycin과 같은 항생제를 사용하는 것이다. 그러나, 이 항생제에 저항성을 갖는 균주가 국내에서 분리되었고, 선행 연구에서 biovar 2 균주의 저항성이 strA-strB 유전자에 의한 것으로 밝혀졌다. 본 연구에서는 Psa biovar 3 균주에서 streptomycin 저항성의 분자적 기작을 밝히고자 하였다. 실험실에서 선발된 streptomycin 저항성 균주의 리보솜 단백질 S12를 암호화하는 유전자인 rpsL의 염기서열을 결정한 결과, 43번째 또는 88번째 코돈에서 자연발생적 점 돌연변이가 일어난 것을 확인하였다. 한편, 두 곳의 키위 과수원에서 분리된 4개의 streptomycin 저항성 biovar 3 균주에서는 민감성 균주에서 AAA인 rpsL의 코돈 43이 AGA로 단일 염기 치환이 일어났고, 이는 아미노산을 lysine에서 arginine으로 변화시키게 된다. 국내에서 발견된 biovar 3 균주 모두의 저항성 기작은 rpsL 유전자의 돌연변이에 기인하였다.

Pseudomonas syringae pv. actinidiae (Psa) is the causal agent responsible for the bacterial canker disease of kiwifruit plants. Psa strains are divided into five different biovars based on genetic and biochemical characteristics. Among them, biovar 2 and 3 strains of Psa were isolated and have been causing widespread damages in Korea. One of the most effective ways to control Psa is to use an antibiotic such as streptomycin. However, Psa strains resistant to this antibiotic were isolated in Korea, and an earlier study revealed that the resistance in the biovar 2 is associated with strA-strB genes. This study aimed to determine the molecular resistance mechanism of Psa biovar 3 strains to streptomycin. Sequencing the rpsL gene encoding ribosomal protein S12 from three streptomycin-resistant strains screened in the laboratory revealed that a spontaneous mutation occurred either at codon 43 or 88. Meanwhile, in four streptomycin-resistant strains of Psa biovar 3 isolated from two kiwifruit orchards, a single nucleotide in codon 43 of the rpsL, which is AAA in streptomycin-sensitive strain, was substituted for AGA causing an amino acid change from lysine to arginine. The resistant mechanism in all biovar 3 strains obtained in Korea was identified as a mutation of the rpsL gene.

키워드

참고문헌

  1. Cameron, A. and Sarojini, V. 2014. Pseudomonas syringae pv. actinidiae: chemical control, resistance mechanisms and possible alternatives. Plant Pathol. 63: 1-11. https://doi.org/10.1111/ppa.12066
  2. Chiou, C. S. and Jones, A. L. 1995. Molecular analysis of high-level streptomycin resistance in Erwinia amylovora. Phytopathology 85: 324-328. https://doi.org/10.1094/Phyto-85-324
  3. Cuevas-Cordoba, B., Cuellar-Sanchez, A., Pasissi-Crivelli, A., Santana-Alvarez, C. A., Hernandez-Illezcas, J. and Zenteno-Cuevas, R. 2013. rrs and rpsL mutations in streptomycin-resistant isolates of Mycobacterium tuberculosis from Mexico. J. Microbiol. Immunol. Infect. 46: 30-34. https://doi.org/10.1016/j.jmii.2012.08.020
  4. Dobner, P., Bretzel, G., Rusch-Gerdes, S., Feldmann, K., Rifai, M., Loscher, T. et al. 1997. Geographic variation of the predictive values of genomic mutations associated with streptomycin resistance in Mycobacterium tuberculosis. Mol. Cell. Probes 11: 123-126. https://doi.org/10.1006/mcpr.1996.0086
  5. Gregory, S. T., Cate, J. H. D. and Dahlberg, A. E. 2001. Streptomycinresistant and streptomycin-dependent mutants of the extreme thermophile Thermus thermophilus. J. Mol. Biol. 309: 333-338. https://doi.org/10.1006/jmbi.2001.4676
  6. Kim, G. H., Kim, K.-H., Son, K. I., Choi, E. D., Lee, Y. S., Jung, J. S. et al. 2016. Outbreak and spread of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae biovar 3 in Korea. Plant Pathol. J. 32: 542-551.
  7. Koh, Y. J., Cha, B. J., Chung, H. J. and Lee D. H. 1994. Outbreak and spread of bacterial canker in kiwifruit. Korean J. Plant Pathol. 10: 68-72.
  8. Koh, Y. J., Kim, G. H. and Jung, J. S. 2017. A proposed manual for the efficient management of kiwifruit bacterial canker in Korea. Res. Plant Dis. 23: 1-18. https://doi.org/10.5423/RPD.2017.23.1.1
  9. Koh, Y. J., Kim, G. H., Jung, J. S., Lee, Y. S. and Hur, J. S. 2010. Outbreak of bacterial canker on Hort16A (Actinidia chinensis Planchon) caused by Pseudomonas syringae pv. actinidiae in Korea. N. Z. J. Crop Hortic. Sci. 38: 275-282. https://doi.org/10.1080/01140671.2010.512624
  10. Koh, Y. J., Kim, G. H., Koh, H. S., Lee, Y. S., Kim, S.-C. and Jung, J. S. 2012. Occurrence of a new type of Pseudomonas syringae pv. actinidiae strain of bacterial canker on kiwifruit in Korea. Plant Pathol. J. 28: 423-427. https://doi.org/10.5423/PPJ.NT.05.2012.0061
  11. Lee, Y. S., Kim, G. H. and Jung, J. S. 2021a. Distribution of subgroups in Pseudomonas syringae pv. actinidiae biovar 3 strains isolated from Korea. J. Life Sci. 31: 52-58. https://doi.org/10.5352/JLS.2021.31.1.52
  12. Lee, Y. S., Kim, J., Kim, G. H., Choi, E. D., Koh, Y. J. and Jung, J. S. 2017. Biovars of Pseudomonas syringae pv. actinidiae strains, the causal agent of bacterial canker of kiwifruit, isolated in Korea. Res. Plant Dis. 23: 35-41. https://doi.org/10.5423/RPD.2017.23.1.35
  13. Lee, Y. S., Kim, G. H., Koh, Y. J. and Jung, J. S. 2021b. Identification of strA-strB genes in streptomycin-resistant Pseudomonas syringae pv. actinidiae biovar 2 strains isolated in Korea. Plant Pathol. J. 37: 489-493. https://doi.org/10.5423/PPJ.NT.05.2021.0078
  14. Lee, Y. S., Kim, G. H., Song, Y.-R., Oh, C.-S., Koh, Y. J. and Jung, J. S. 2020. Streptomycin resistant isolates of Pseudomonas syringae pv. actinidiae in Korea. Res. Plant Dis. 26: 44-47. https://doi.org/10.5423/RPD.2020.26.1.44
  15. Loper, J. E., Henkels, M. D., Roberts, R. G., Grove, G. G., Willet, M. J. and Smith, T. J. 1991. Evaluation of streptomycin, oxytetracycline, and copper resistance of Erwinia amylovora isolated from pear orchards in Washington State. Plant Dis. 75: 287-290. https://doi.org/10.1094/PD-75-0287
  16. Lyu, Q., Bai, K., Kan, Y., Jiang, N., Thapa, S. P., Coaker, G. et al. 2019. Variation in streptomycin resistance mechanisms in Clavibacter michiganensis. Phytopathology 109: 1849-1858. https://doi.org/10.1094/phyto-05-19-0152-r
  17. Manulis, S., Zutra, D., Kleitman, F., Dror, O., David, I., Zilberstaine, M. et al. 1998. Distribution of streptomycin-resistant strains of Erwinia amylovora in Israel and occurrence of blossom blight in the autumn. Phytoparasitica 26: 223-230. https://doi.org/10.1007/BF02981437
  18. McGhee, G. C., Guasco, J., Bellomo, L. M., Blumer-Schuette, S. E., Shane, W. W., Irish-Brown, A. et al. 2011. Genetic analysis of streptomycin-resistant (SmR) strains of Erwinia amylovora suggests that determination of two genotypes is responsible for the current distribution of SmR E. amylovora in Michigan. Phytopathology 101: 182-191. https://doi.org/10.1094/PHYTO-04-10-0127
  19. Ponce de Leon-Door, A., Romo Chacon, A. and Acosta Muniz, C. 2013. Detection of streptomycin resistance in Erwinia amylovora strains isolated from apple orchards in Chihuahua, Mexico. Eur. J. Plant Pathol. 137: 223-229. https://doi.org/10.1007/s10658-013-0241-4
  20. Russo, N. L., Burr, T. J., Breth, D. I. and Aldwinckle, H. S. 2008. Isolation of streptomycin-resistant isolates of Erwinia amylovora in New York. Plant Dis. 92: 714-718. https://doi.org/10.1094/pdis-92-5-0714
  21. Sawada, H., Kondo, K. and Nakaune, R. 2016. Novel biovar (biovar 6) of Pseudomonas syringae pv. actinidiae causing bacterial canker of kiwifruit (Actinidia deliciosa) in Japan. Jpn. J. Phytopathol. 82: 101-115. https://doi.org/10.3186/jjphytopath.82.101
  22. Sawada, H. and Fujikawa, T. 2019. Genetic diversity of Pseudomonas syringae pv. actinidiae, pathogen of kiwifruit bacterial canker. Plant Pathol. 68: 1235-1248. https://doi.org/10.1111/ppa.13040
  23. Sundin, G. W. and Bender, C. L. 1996. Dissemination of the strA-strB streptomycin-resistance genes among commensal and pathogenic bacteria from humans, animals, and plants. Mol. Ecol. 5: 133-143. https://doi.org/10.1111/j.1365-294X.1996.tb00299.x
  24. Sundin, G. W. and Wang, N. 2018. Antibiotic resistance in plant-pathogenic bacteria. Annu. Rev. Phytopathol. 56: 161-180. https://doi.org/10.1146/annurev-phyto-080417-045946
  25. Thomson, S. V., Gouk, S. C., Vanneste, J. L., Hale, C. N. and Clark, R. G. 1993. The presence of streptomycin resistant isolates of Erwinia amylovora in New Zealand. Acta Hortic. 338: 223-230. https://doi.org/10.17660/actahortic.1993.338.32
  26. Tyson, J. L., Dobson, S. J. and Manning, M. A. 2017. Effect of a protectant copper application on Psa infection of kiwifruit trap plants. N. Z. Plant Prot. 70: 310-314. https://doi.org/10.30843/nzpp.2017.70.65
  27. Valenzuela, M., Mendez, V., Montenegro, I., Besoain, X. and Seeger, M. 2019. Streptomycin resistance in Clavibacter michiganensis subsp. michiganensis from Chile is related to an rpsL gene mutation. Plant Pathol. 68: 426-433. https://doi.org/10.1111/ppa.12971
  28. Vanneste, J. L. 2017. The scientific, economic, and social impacts of the New Zealand outbreak of bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae). Annu. Rev. Phytopathol. 55: 377-399. https://doi.org/10.1146/annurev-phyto-080516-035530
  29. Zhang, Y., Chen, Y., Zhu, X., Xu, Y., Hou, Y., Gao, T. et al. 2011. A molecular mechanism of resistance to streptomycin in Xanthomonas oryzae pv. oryzicola. Phytoparasitica 39: 393-401. https://doi.org/10.1007/s12600-011-0172-6