DOI QR코드

DOI QR Code

맞춤형화장품 베이스로서 리포좀 에센스의 물성 평가 및 피부타입에 따른 만족도 평가

Evaluation of Physical Properties of Liposome Essences as Customized Cosmetic Bases and Evaluation of Satisfaction According to Skin Type

  • 안형근 (제주대학교 화학.코스메틱스학과) ;
  • 현통일 (제주대학교 화학.코스메틱스학과) ;
  • 윤경섭 (제주대학교 화학.코스메틱스학과)
  • An, Hyung Guen (Department of Chemistry and Cosmetics, College of Natural Sciences, Jeju National University) ;
  • Hyeon, Tong-Il (Department of Chemistry and Cosmetics, College of Natural Sciences, Jeju National University) ;
  • Yoon, Kyung-Sup (Department of Chemistry and Cosmetics, College of Natural Sciences, Jeju National University)
  • 투고 : 2022.02.03
  • 심사 : 2022.03.10
  • 발행 : 2022.03.30

초록

맞춤형화장품은 화장품산업에서 최근 사회환경의 빠른 변화에 대한 대응, 개성과 다양성을 추구하는 트렌드로서 지속적으로 언급되고 있다. 이에 사업장에서 용이하게 혼합하여 적용할 수 있는 맞춤형화장품 베이스로 리포좀 제형과 에센스 제형의 비율을 달리함으로써 피부타입에 대응한 리포좀 에센스 4 종을 제조하였다. 리포좀 에센스 4 종에 대한 휘발잔분 측정과 90 일 동안의 시간에 따른 나노 입자크기, 다분산지수, 제타전위 및 점도를 측정하였으며, 콜로이드 분산계의 안정성 평가방법으로서 터비스캔을 측정하였다. 또한 피부타입에 대응한 리포좀 에센스 4 종에 대해 간이 사용성 평가를 진행하였다. 결과, 리포좀 에센스 4 종은 지성용보다는 건성용 제품에서 휘발잔분량이 증가하였으며, 입자크기는 165 ~ 175 nm 범위로 시간에 따라 증가 경향을 보여 최대 31.5%까지 증가하였고, 다분산지수는 0.23 ~ 0.26 정도로 시간에 따른 변화는 거의 없었으며, 제타전위는 -74 ~ -72 mV로 시간에 따라 약간 감소 경향을 보이나 최대 14.0% 감소하는 정도로 변화가 거의 없었다. 점도는 2,580 ~ 3,290 cps 범위로 시간에 따라 감소 경향을 보여 최대 17.5% 감소를 보였다. 터비스캔 측정에서는 안정성의 척도인 turbiscan stability index가 모두 1.0 이하로 분산 안정성을 보였다. 피부타입 대응 전체적인 간이 사용성 만족도 평가(6 점법)에서는 중지성 피부용 제품(5.33 ± 0.75 점) > 중건성 피부용 제품(5.13 ± 0.95 점) > 건성 피부용 제품(5.03 ± 0.96 점) > 지성 피부용 제품(4.80 ± 1.04 점) 순으로 평가되었다. 리포좀 제형과 에센스 제형의 비율을 달리한 피부타입 대응 리포좀 에센스 4 종은 물성적으로 안정하며, 피부타입에 따른 맞춤형화장품 베이스로서의 적용 가능성을 확인하였다.

Customized cosmetics are continuously mentioned as a trend in the cosmetics industry to respond to the recent rapid changes in the social environment and pursue individuality and diversity. Accordingly, four types of liposome essence corresponding to skin types were prepared by varying the ratio of liposome formulation and essence formulation as a customized cosmetic base that can be easily mixed and applied at the workplace. The volatilization residues of four types of liposome essence were measured and the nanoparticle size, polydispersity index, zeta potential and viscosity according to time for 90 d were measured, and Turbiscan was measured as a method for evaluating the stability of a colloidal dispersion system. In addition, a simple usability evaluation was performed for four types of liposome essence corresponding to the skin type. As a result, the amount of volatile residue in the four types of liposome essence was increased in dry products rather than oily ones, and the particle size showed a tendency to increase with time in the range of 165 to 175 nm, increasing up to 31.5%, and the polydispersity index was 0.23 to 0.26. There was little change with time, and the zeta potential was -74 to -72 mV, showing a slight decrease with time, but there was little change to the extent of a maximum decrease of 14.0%. Viscosity showed a decreasing trend with time in the range of 2,580 ~ 3,290 cps, showing a maximum decrease of 17.5%. In the turbiscan measurement, all of the turbiscan stability index, a measure of stability, were less than 1.0, indicating dispersion stability. In the overall simple usability satisfaction evaluation for skin types (6 points), products for oily skin (5.33 ± 0.75 points) > products for medium dry skin (5.13 ± 0.95 points) > products for dry skin (5.03 ± 0.96 points) > products for oily skin (4.80 ± 1.04 points) points) were evaluated in order. The four types of liposome essence corresponding to skin types with different ratios of liposome formulation and essence formulation were physically stable, and the possibility of application as a customized cosmetic base according to skin type was confirmed.

키워드

과제정보

본 연구는 산업통상자원부와 한국산업기술진흥원의 "지역혁신클러스터육성(R&D, P0015299)"사업의 지원을 받아 수행된 연구결과임.

참고문헌

  1. E. J. Go, Competition in the global beauty industry is changing, LGERI, 1 (2017).
  2. Y. S. Jung, 57% of 1040 women "need customized cosmetics", CosMoring, (2016).
  3. K. H, Yoon, The keyword for cosmetics trend in 2021 is 'Clean (C.L.E.A.N)', JoongAng Ilbo, (2020).
  4. K. S. Yoon, In the era of customized consumption, the center shifted to customized cosmetics, K. Beauty Sci., 2, 30 (2019).
  5. J. Baek, 2019 Skin characteristics bank construction business report by country: skin measurement result report, eds. Y. Lim, J. Kim, and S. Yang, 1, KCII, Gyeonggi-do (2019).
  6. K. S. Yoon, Cosmetology, G. B. Jo, 22, Kuminsa, Seoul (2021).
  7. I. S. Seo, K-beauty's new growth engine, the status and development trend of personalized cosmetics, K. Beauty Sci., 9, 72 (2019).
  8. Korea, Patent 10-2020-0107033 (2020).
  9. G. Betz, A. Aeppli, N. Menshutina, and H. Leuenberger, In vivo comparison of various liposome formulations for cosmetic application, Int. J. Pharm., 296, 44 (2005). https://doi.org/10.1016/j.ijpharm.2005.02.032
  10. E. J. An, C. K. Kang, J. W. Kim, and B. S. Jin, Lipidbased vesicles as transdermal delivery system, KIC News, 13(4), 24 (2010).
  11. Y. P. Patil and S. Jadhav, Novel methods for liposome preparation, Chem. Phys. Lipids, 177, 8 (2014). https://doi.org/10.1016/j.chemphyslip.2013.10.011
  12. S. J. Yang, T. Y. Kim, C. M. Lee, K. S. Lee, and K. S. Yoon, Study on the stability of biotin-containing nanoliposome, J. Soc. Cosmet. Sci. Korea, 46(2), 133 (2020). https://doi.org/10.15230/SCSK.2020.46.2.133
  13. T. I. Hyeon and K S. Yoon, Skin absorption and physical property of ceramide-added ethosome, Journal of the Korean Applied Science and Technology, 38(3), 801 (2021). https://doi.org/10.12925/JKOCS.2021.38.3.801
  14. Y. J. Kang, J. I. Kim, S. Y. Son, Y. A. Park, and H. G. Ji, The formation and stabilization of niosome with various surfactants, J. Korean Soc. Cosmetol., 6, 97 (2019).
  15. C. Celia, E. Trapasso, D. Cosco, D. Paolino, and M. Fresta, Turbiscan lab expert analysis of the stability of ethosomes and ultradeformable liposomescontaining a bilayer fluidizing agent, Colloids Surf. B Biointerfaces, 72(1), 155 (2009). https://doi.org/10.1016/j.colsurfb.2009.03.007
  16. A. Ruyra, M. Cano-Sarabia, S. A. MacKenzie, D. Maspoch, and N. Roher, A novel liposome-based nanocarrier loaded with an LPS-dsRNA cocktail for fish innate immune system stimulation, PLoS One, 8(10), 1 (2013).
  17. L. S. Baumann, The skin type solution, ed. P. Rappaport, 1, Bantam Dell, New York (2006).
  18. J. Y. Choi, Y. J. Choi, J. H. Nam, H. J. Jung, G. Y. Lee, and W. S. Kim, Identifying skin type using the Baumann skin type questionnaire in korea women who visited a dermatologic clinic, Korean J. Dermatol., 54(6), 422 (2016).
  19. J. Lee, G. Y. Chi, and J. Lim, Effect of fatty acid on the membrane fluidity of liposomes, Appl. Chem. Eng., 28(2), 177 (2017).
  20. E. Yilmaz and H. H. Borchert, Design of a phytosphingosinecontaining, positively-charged nanoemulsion as a colloidal carrier system for dermal application of ceramides, Eur. J. Pharm. Biopharm., 60(1), 91 (2005). https://doi.org/10.1016/j.ejpb.2004.11.009
  21. Y. P. Patil and S. Jadhav, Novel methods for liposome preparation, Chem. Phys. Lipids, 177(1), 8 (2014). https://doi.org/10.1016/j.chemphyslip.2013.10.011