DOI QR코드

DOI QR Code

A system of several fraction laws for the identification of rotating response of FG shell

  • Yahya, Ahmad (Nuclear Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Khadimallah, Mohamed A. (Civil Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University) ;
  • Khedher, Khaled Mohamed (Department of Civil Engineering, College of Engineering, King Khalid University) ;
  • Al-Basyouni, K.S. (Mathematics Department, Faculty of Science, King Abdulaziz University) ;
  • Ghandourah, Emad (Nuclear Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Banoqitah, Essam Mohammed (Nuclear Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Alshoaibi, Adil (Department of Physics, College of Science, King Faisal University)
  • Received : 2021.06.11
  • Accepted : 2022.03.10
  • Published : 2022.03.25

Abstract

The problem is formulated by applying the Kirchhoff's conception for shell theory. The longitudinal modal displacement functions are assessed by characteristic beam ones meet clamped-clamped end conditions applied at the shell edges. The fundamental natural frequency of rotating functionally graded cylindrical shells of different parameter versus ratios of length-to-diameter and height-to-diameter for a wide range has been reported and investigated through the study with fractions laws. The frequency first increases and gain maximum value with the increase of circumferential wave mode. By increasing different value of height-to-radius ratio, the resulting backward and forward frequencies increase and frequencies decrease on increasing height-to-radius ratio. Moreover, on increasing the rotating speed, the backward frequencies increases and forward frequencies decreases. The trigonometric frequencies are lower than that of exponential and polynomial frequencies. Stability of a cylindrical shell depends highly on these aspects of material. More the shell material sustains a load due to physical situations, the more the shell is stable. Any predicted fatigue due to burden of vibrations is evaded by estimating their dynamical aspects.

Keywords

Acknowledgement

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. G: 158-135-1442. The authors, therefore, gratefully acknowledge DSR technical and financial support.

References

  1. Ahmad, M. and Naeem, M.N. (2009), "Vibration characteristics of rotating FGM circular cylindrical shell using wave propagation method", Europ. J. Sci. Res., 36(2), 184-235.
  2. Akbas S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stability Dyn., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X.
  3. Akbas, S.D. (2016a), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125.
  4. Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579.
  5. Akbas, S.D. (2017b), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009.
  6. Akbas, S.D. (2018), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(8), 1-11. https://doi.org/10.1007/s40430-018-1315-1.
  7. Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39. https://doi.org/10.12989/anr.2018.6.1.039.
  8. Akbas, S.D. (2018b), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219. https://doi.org/10.12989/anr.2018.6.3.219.
  9. Akbas, S.D. (2019), "Axially forced vibration analysis of cracked a nanorod", J. Comput. Appl. Mech., 50(1), 63-68. http://doi.org/10.22059/jcamech.2019.281285.392.
  10. Akbas, S.D. (2020), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277. https://doi.org/10.12989/anr.2020.8.4.277.
  11. Alijani, M. and Bidgoli, M.R. (2018), "Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., 6(6), 585. https://doi.org/10.12989/acc.2018.6.6.585.
  12. Amabili, M., Pellicano, F. and Paidoussis M.P. (1998), "Nonlinear vibrations of simply Love, A.E.H. (1888), "On the small free vibrations and deformation of thin elastic shell", Phil. Trans. R. Soc. London, A179, 491-549.
  13. Bryan, G.H. (1890), "On the beats in the vibration of revolving cylinder", Proceedings of the Cambridge philosophical Society, 7, 101-111.
  14. Chen, Y., Zhao, H.B. and Shin, Z.P. (1993), "Vibration of high speed rotating shells with calculation for cylindrical shells", J. Sound Vib., 160, 137. https://doi.org/10.1006/jsvi.1993.1010.
  15. Chung, H., Turula, P. Mulcahy, T.M. and Jendrzejczyk, J.A. (1981), "Analysis of cylindrical shell vibrating in a cylindrical fluid region", Nucl. Eng. Des., 63(1), 109-1012. https://doi.org/10.1016/0029-5493(81)90020-0.
  16. Civalek, O . (2020), "Vibration of functionally graded carbon nanotube reinforced quadrilateral plates using geometric transformation discrete singular convolution method", Int. J. Numer. Method. Eng., 121(5), 990-1019. https://doi.org/10.1002/nme.6254.
  17. Civalek, O. and Jalaei, M.H. (2020), "Buckling of carbon nanotube (CNT)-reinforced composite skew plates by the discrete singular convolution method", Acta Mechanica, 231(6), 2565-2587. https://doi.org/10.1007/s00707-020-02653-3.
  18. Demir, A.D. and Livaoglu, R. (2019), "The role of slenderness on the seismic behavior of ground-supported cylindrical silos", Adv. Concrete Constr., 7(2), 65. https://doi.org/10.12989/acc.2019.7.2.065.
  19. Di Taranto, R.A. and Lessen, M. (1964), "Coriolis acceleration effect on the vibration of rotating thin-walled circular cylinder", Trans. ASME, J. Appl. Mech., 31, 700-701. https://doi.org/10.1115/1.3629733.
  20. Ergin, A. and Temarel, P. (2002), "Free vibration of a partially liquid-filled and submerged, horizontal cylindrical shell", J. Sound Vib., 254(5), 951-965. https://doi.org/10.1006/jsvi.2001.4139.
  21. Fox, C.H.J. and Hardie, D.J.W. (1985), "Harmonic response of rotating cylindrical shell", J. Sound Vib., 101, 495. https://doi.org/10.1016/S0022-460X(85)80067-5.
  22. Ghosh, A, Miyamoto, Y, Reimanis, I. and Lannutti, J.J. (1997), "Functionally graded materials, manufacture, properties and applications", Am. Ceram. Transac., 76, 171-89.
  23. Kagimoto, H., Yasuda, Y. and Kawamura, M. (2015), "Mechanisms of ASR surface cracking in a massive concrete cylinder", Adv. Concrete Constr., 3(1), 039. https://doi.org/10.12989/acc.2015.3.1.039.
  24. Kar, V.R. and Panda, S.K. (2015), "Free vibration responses of temperature dependent functionally graded curved panels under thermal environment", Latin Am. J. Solid. Struct., 12(11), 2006-2024. https://doi.org/10.1590/1679-78251691
  25. Kar, V.R. and Panda, S.K. (2015), "Thermoelastic analysis of functionally graded doubly curved shell panels using nonlinear finite element method", Compos. Struct., 129, 202-212. https://doi.org/10.1016/j.compstruct.2015.04.006.
  26. Kar, V.R. and Panda, S.K. (2016), "Post-buckling behaviour of shear deformable functionally graded curved shell panel under edge compression", Int. J. Mech. Sci., 115, 318-324. https://doi.org/10.1016/j.ijmecsci.2016.07.014.
  27. Kar, V.R. and Panda, S.K. (2017), "Postbuckling analysis of shear deformable FG shallow spherical shell panel under nonuniform thermal environment", J. Therm. Stress., 40(1), 25-39. https://doi.org/10.1080/01495739.2016.1207118.
  28. Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
  29. Lam K.Y. and Loy, C.T. (1994), "On vibration of thin rotating laminated composite cylindrical shells", J. Sound Vib., 116, 198. https://doi.org/10.1016/0961-9526(95)91289-S.
  30. Li, H. and Lam, K.Y. (1998), "Frequency characteristics of a thin rotating cylindrical shell using the generalized differential quadrature method", Int. J. Mech. Sci., 40(5), 443-459. https://doi.org/10.1016/S0020-7403(97)00057-X.
  31. Mehar, K. and Panda, S.K. (2018), "Elastic bending and stress analysis of carbon nanotube-reinforced composite plate: Experimental, numerical, and simulation", Adv. Polym. Tech., 37(6), 1643-1657. https://doi.org/10.1002/adv.21821.
  32. Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2016), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324.
  33. Mesbah, H.A. and Benzaid, R. (2017), "Damage-based stress-strain model of RC cylinders wrapped with CFRP composites", Adv. Concrete Constr., 5(5), 539. https://doi.org/10.12989/acc.2017.5.5.539.
  34. Moazzez, K., Saeidi Googarchin, H. and Sharifi, S.M.H. (2018), "Natural frequency analysis of a cylindrical shell containing a variably oriented surface crack utilizing line-spring model", Thin Wall. Struct., 125, 63-75. https://doi.org/10.1016/j.tws.2018.01.009.
  35. Najafizadeh, M.M. and Isvandzibaei, M.R. (2007), "Vibration of (FGM) cylindrical shells based on higher order shear deformation plate theory with ring support", Acta Mechanica, 191, 75-91. http/10.1007/s00707-006-0438-0.
  36. Padovan, J. (1975), "Travelling waves vibrations and buckling of rotating anisotropic shells of revolution by finite element", Int. J. Solid Struct., 11(12), 1367-1380. https://doi.org/10.1016/0020-7683(75)90064-5.
  37. Penzes, R.L.E. and Kraus, H. (1972), "Free vibrations of pre-stresses cylindrical shells having arbitrary homogeneous boundary conditions", AIAA J., 10, 1309. https://doi.org/10.2514/3.6605.
  38. Ramteke, P.M. (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., 33(6), 865-875. https://doi.org/10.12989/scs.2019.33.6.865.
  39. Ramteke, P.M. and Panda, S.K. (2021), "Free vibrational behaviour of multi-directional porous functionally graded structures", Arab. J. Sci. Eng., 46(8), 7741-7756. https://doi.org/10.1007/s13369-021-05461-6.
  40. Ramteke, P.M., Mahapatra, B.P., Panda, S.K. and Sharma, N. (2020), "Static deflection simulation study of 2D Functionally graded porous structure", Mater. Today Proc., 33, 5544-5547. https://doi.org/10.1016/j.matpr.2020.03.537.
  41. Ramteke, P.M., Mehar, K., Sharma, N. and Panda, S.K. (2021), "Numerical prediction of deflection and stress responses of functionally graded structure for grading patterns (power-law, sigmoid, and exponential) and variable porosity (even/uneven)", Scientia Iranica, 28(2), 811-829. https://doi.org/10.24200/sci.2020.55581.4290.
  42. Ramteke, P.M., Patel, B. and Panda, S.K. (2020), "Time-dependent deflection responses of porous FGM structure including pattern and porosity", Int. J. Appl. Mech., 12(09), 2050102. https://doi.org/10.1142/S1758825120501021.
  43. Saito, T. and Endo, M. (1986), "Vibrations of finite length rotating cylindrical shell", J. Sound Vib., 107, 17. https://doi.org/10.1016/0022-460X(86)90279-8.
  44. Samadvand, H. and Dehestani, M. (2020), "A stress-function variational approach toward CFRP-concrete interfacial stresses in bonded joints", Adv. Concrete Constr., 9(1), 43-54. https://doi.org/10.12989/acc.2020.9.1.043.
  45. Sewall, J.L. and Naumann, E.C. (1968), An Experimental and Analytical Vibration Study of Thin Cylindrical Shells with and without Longitudinal Stiffeners, National Aeronautic and Space Administration, Springfield.
  46. Sharma, P., Singh, R. and Hussain, H. (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, https://doi.org/10.1177/0954406219888234.
  47. Sivadas, K.R. and Ganesan, N. (1964), "Effect of rotation on vibrations of moderately thin cylindrical shell", J. Vib. Acoust., 116(1),198-202. https://doi.org/10.1115/1.2930412.
  48. Srinivasan, A.V and Luaterbach, G.F. (1971), "Travelling waves in rotating cylindrical shells", Trans. ASME J. Eng. Indust., 93, 1229-1232. https://doi.org/10.1115/1.3428067.
  49. Suresh, S. and Mortensen, A. (1997), "Functionally gradient metals and metal ceramic composites", Part 2 Therm. Mech. Behav. Int. Mater, 42, 85-116. https://doi.org/10.1179/imr.1997.42.3.85.
  50. Swaddiwudhipong. S., Tian. J. and Wang C.M. (1995), "Vibration of cylindrical shells with ring supports", J. Sound Vib., 187(1), 69-93. https://doi.org/10.1006/jsvi.1995.0503.
  51. Wang S.S. and Chen, Y. (1974), "Effects of rotation on vibrations of circular cylindrical shells", J. Acoust. Soc. Am., 55, 1340-1342. https://doi.org/10.1121/1.1914708.
  52. Zhang. X.M., Liu. G.R. and Lam, K.Y. (2001), "Coupled vibration of fluid-filled cylindrical shells using the wave propagation approach", Appl. Acoust., 62, 229-243. https://doi.org/10.1016/S0003-682X(00)00045-1.
  53. Zohar, A. and Aboudi, J. (1973), "The free vibrations of thin circular finite rotating cylinder", Int. J. Mech. Sci., 15, 269-278. https://doi.org/10.1016/0020-7403(73)90009-X.