DOI QR코드

DOI QR Code

Neuroprotective effect of Coreopsis lanceolata extract against hydrogen-peroxide-induced oxidative stress in PC12 cells

  • Kyung Hye Seo (Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Hyung Don Kim (Development of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Jeong-Yong Park (Development of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Dong Hwi Kim (Development of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Seung-Eun Lee (Development of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Gwi Young Jang (Development of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Yun-Jeong Ji (Development of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Ji Yeon Lee (Development of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Rural Development Administration)
  • Received : 2021.11.29
  • Accepted : 2022.01.13
  • Published : 2022.06.01

Abstract

The present study investigated the neuroprotective effects of Coreopsis lanceolate extract against hydrogen-peroxide (H2O2)-induced oxidative damage and cell death in pheochromocytoma 12 (PC12) cells. Reactive oxygen species (ROS), 2,2'-azinobis (3-ethylbebzothiazoloine-6-sulfonic acid) diammonium salt, and 1,1-diphenyl-2-picrrylhydrazyl radical scavenging activities, as well as the expression levels of proteins associated with oxidative damage and cell death were investigated. According to the results, C. lanceolate extract exhibited inhibitory activity against intracellular ROS generation and cell-damaging effects induced by hydroxyl radicals in a dose-dependent manner. Total phenolic and flavonoid contents were 22.3 mg·g-1 gallic acid equivalent and 16.2 mg·g-1 catechin equivalent, respectively. Additionally, a high-performance liquid chromatography (HPLC) assay based on the internal standard method used to detect phenolic compounds. The phenolic compounds identified in C. lanceolata extract contained (+)-catechin hydrate (5.0 ± 0.0 mg·g-1), ferulic acid (1.6 ± 0.0 mg·g-1), chlorogenic acid (1.5 ± 0.0 mg·g-1), caffeic acid (1.2 ± 0.0 mg·g-1), naringin (0.9 ± 0.0 mg·g-1), and p-coumaric acid (0.5 ± 0.0 mg·g-1). C. lanceolata extract attenuated pro-apoptotic Bax expression levels and enhanced the expression levels of anti-apoptotic Bcl-2, caspase-3, and caspase-9 proteins. Therefore, C. lanceolata is a potential source of materials with neuroprotective properties against neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases.

Keywords

Acknowledgement

본 연구는 원예특작시험연구사업(사업번호: PJ01415801)의 지원에 의해 이루어진 결과로 이에 감사드립니다.

References

  1. Balasundram N, Sundram K, Samman S. 2006. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry 99:191-203. https://doi.org/10.1016/j.foodchem.2005.07.042
  2. Bidchol AM, Wilfred A, Abhijn P, Abhijn R. 2011. Free radical scavenging activity of aqueous and ethanolic extract of Brassica oleracea L. var. italica. Food and Bioprocess Technology 4:1137-1143. https://doi.org/10.1007/s11947-009-0196-9
  3. Boatright KM, Salvesen GS. 2003. Mechanisms of caspase activation. Current Opinion in Cell Biology 15:725-731. https://doi.org/10.1016/j.ceb.2003.10.009
  4. Chung IM, Park MR, CHun JC, Yun SJ. 2003. Resveratrol accumulation and resveratrol synthase gene expression in response to abiotic stresses and hormones in peanut plants. Plant Science 164:103-109. https://doi.org/10.1016/S0168-9452(02)00341-2
  5. Ebrahimzadeh MA, Pourmorad F, Bekhradnia AR. 2008. Iron chelating activity, phenol and flavonoid content of some medicinal plants from Iran. African Journal of Biotechnology 7:3188-3192.
  6. Folin O, Denis W. 1912. On phosphotungstic-phosphomolybdic compounds as color reagents. Journal of Biological Chemistry 12:239-243.
  7. Heo HJ, Kim DO, Choi SJ, Shin DH, Lee CY. 2004. Potent inhibitory effect of flavonoids in Scutellaria baicalensis on amyloid β protein-induced neurotoxicity. Journal of Agricultural and Food Chemistry 52:4128-4132. https://doi.org/10.1021/jf049953x
  8. Ho CT. 1992. Phenolic compounds in food: An overview. ACS Publications 507:2-7.
  9. Ilavenil S, Arasu MV, Lee JC, Kim DH, Roh SG, Park HS, Choi GJ, Mayakrishnan V, Choi KC. 2014. Trigonelline attenuates the adipocyte differentiation and lipid accumulation in 3T3-L1 cells. Phytomedicine 21:758-765. https://doi.org/10.1016/j.phymed.2013.11.007
  10. Kim HG, Oh HJ, Ko JH, Song HS, Lee YG, Kang SC, Lee DY, Baek NI. 2019. Lanceoleins A-G, hydroxychalcones, from the flowers of Coreopsis lanceolata and their chemopreventive effects against human colon cancer cells. Bioorganic Chemistry 85:274-281.
  11. Kim MY, Jang GY, Lee SH, Kim KM, Lee JS, Jeong HS. 2018. Preparation of black soybean (Glycine max L) extract with enhanced levels of phenolic compound and estrogenic activity using high hydrostatic pressure and pregermination. High Pressure Research 38:177-192. https://doi.org/10.1080/08957959.2018.1459599
  12. Ko MS, Lee HJ, Kang MJ. 2012. Antioxidant activities and whitening effects of extracts from Hippophae rhamnoides L. Journal of the East Asian Society of Dietary Life 22:812-817.
  13. Lee AY, Kim MJ, Lee SH, Shim JS, Cho EJ. 2018. Protective effect of Cirsium japonicum var. maackii against oxidative stress in C6 glial cells. Korean Journal of Agricultural Science 45:509-519.[in Korean] https://doi.org/10.7744/KJOAS.20180031
  14. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X. 1997. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479-489. https://doi.org/10.1016/S0092-8674(00)80434-1
  15. Mandel S, Youdim MB. 2004. Catechin polyphenols: Neurodegeneration and neuroprotection in neurodegenerative diseases. Free Radical Biology and Medicine 37:304-317. https://doi.org/10.1016/j.freeradbiomed.2004.04.012
  16. Masella R, Benedetto RD, Vari R, Filesi C, Giovannini C. 2005. Novel mechanisms of natural antioxidant compounds in biological systems: Involvement of glutathione and glutathione-related enzymes. The Journal of Nutritional Biochemistry 16:577-586.
  17. Meister A. 1992. On the antioxidant effects of ascorbic acid and glutathione. Biochemical Pharmacology 44:1905-1915. https://doi.org/10.1016/0006-2952(92)90091-V
  18. Nam MN, Lee AY, Sin SM, Goo YM, Cho EJ. 2019. Protective effect of Samultang and its four herbal plants against reactive oxygen speciesin vitro and cellular system. Korean Journal of Agricultural Science 46:427-437. https://doi.org/10.7744/KJOAS.20190021
  19. Ozben T. 2007. Oxidative stress and apoptosis: Impact on cancer therapy. Journal of Pharmaceutical Sciences 96:2181-2196.
  20. Park SJ. 2014. Antioxidant and anti-adipogenic effects of ethanolic extracts from Ixeris dentata Nakai. Culinary Science and Hospitality Research 20:133-142. https://doi.org/10.20878/cshr.2014.20.1.011
  21. Pourmorad F, Hosseinimehr S, Shahabimajd N. 2006. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. African Journal of Biotechnology 5:1142-1145.
  22. Rains TM, Agarwal S, Maki KC. 2011. Antiobesity effects of green tea catechins: A mechanistic review. The Journal of Nutritional Biochemistry 22:1-7. https://doi.org/10.1016/j.jnutbio.2010.06.006
  23. Reichling J, Horz KH, Ohlenmacher U. 1994. Coreopsis spp: In vitro culture and the formation of phenylpropanoids and other secondary metabolites. In Medicinal and Aromatic Plants VI. pp. 106-128. Springer, Berlin, Heidelberg.
  24. Reichling J, Thron U. 1989. Comparative study on the production and accumulation of unusual phenylpropanoids in plants and in vitro cultures of Coreopsis tinctoria and C. lanceolata. Pharmaceutisch Weekblad 11:83-86. https://doi.org/10.1007/BF02110254
  25. Rice-Evans C, Miller N. 1996. Antioxidant activities of flavonoids as bioactive components of food. Biochemical Society Transactions 24:790-795.
  26. Simon HU, Haj-Yehia A, Levi-Schaffer F. 2000. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415-418. https://doi.org/10.1023/a:1009616228304
  27. Srinivasula SM, Hegde R, Saleh A, Datta P, Shiozaki E, Chai J, Lee RA, Robbins PD, Fernandes-Alnemri T, Shi Y, et al. 2001. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410:112-116. https://doi.org/10.1038/35065125
  28. Tait SW, Green DR. 2010. Mitochondria and cell death: Outer membrane permeabilization and beyond. Nature Reviews Molecular Cell Biology 11:621-632.
  29. Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer DJ. 1995. Bad, a heterodimeric partnerfor Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80:285-291. https://doi.org/10.1016/0092-8674(95)90411-5
  30. Zhang Y, Zhang Y, Shi S, Zhao M, Jiang Y, Tu P. 2006. A novel chalcone from Coreopsis tinctoria Nutt. Biochemical Systematics and Ecology 10:766-769.