DOI QR코드

DOI QR Code

Application of ray-based blind deconvolution to long-range acoustic communication in deep water

음선 기반 블라인드 디컨볼루션의 장거리 심해 환경으로의 적용

  • 김동현 (한국해양과학기술원-한국해양대학교 해양과학기술전문대학원) ;
  • 박희진 (한화시스템 해양연구소) ;
  • 김재수 (한국해양대학교 해양공학과) ;
  • 한주영 (국방과학연구소)
  • Received : 2021.12.31
  • Accepted : 2022.02.16
  • Published : 2022.03.31

Abstract

When the source waveform is unknown, the Green's function can be estimated by Ray-based Blind Deconvolution (RBD) based on the simple array signal processing. In previous papers, RBD was successfully demonstrated using simulation and experiments in shallow water environment. In this paper, we investigate the applicability of RBD for a long-range communication (e.g., 30 km, 60 km, and 90 km) in a deep water environment (1,000 m ~), using experimental data conducted in the east of Pohang, South Korea, in October 2018. Data results are presented to demonstrate Green's function estimation of a communication signal (2.2 kHz ~ 2.9 kHz) using a 16-element, 42-m long vertical array. The results show that the Green's function estimated from RBD is comparable to that of matched filter result. Additional communication performance at a maximum range of 90 km will be also presented.

송신 신호를 알지 못하는 경우에 대해 그린 함수는 간단한 배열 신호 처리 기반의 음선 기반 블라인드 디컨볼루션을 이용해 추정될 수 있다. 근거리 천해 환경에서의 음선 기반 블라인드 디컨볼루션은 선행 연구들에 의해 시뮬레이션 및 데이터를 기반으로 검증되었다. 본 논문에서는 30 km부터 90 km까지의 장거리 심해(1,000 m 이상의 깊이) 환경에서의 음선 기반 블라인드 디컨볼루션 기법의 가능성을 확인하였다. 이를 위해 2018년 포항 동방 해역에서 수행된 해상실험을 활용하였으며, 데이터 결과는 16개 수신기로 구성된 42 m 길이의 수직 선 배열 센서를 통해 수신된 통신 신호(2.2 kHz ~ 2.9 kHz) 의 그린 함수 추정을 입증하기 위해 도시하였다. 분석 결과로부터 정합 필터와 음선 기반 블라인드 디컨볼루션으로 추정한 그린 함수가 유사함을 확인하였다. 또한, 음선 기반 블라인드 디컨볼루션을 이용하여 최대 90 km 거리의 장거리 통신 신호의 성능 분석 결과를 제시하였다.

Keywords

Acknowledgement

본 논문은 국방과학연구소의 지원으로 수행되었습니다(UD200010DD).

References

  1. A. B. Baggeroer, W. A. Kuperman, and P. N. Mikhalevsky, "An overview of matched field methods in ocean acoustics," IEEE J. Oceanic Eng. 18, 401-424 (1993). https://doi.org/10.1109/48.262292
  2. H. C. Song, "An overview of underwater time-reversal communication," IEEE J. Oceanic Eng. 41, 644-655 (2016). https://doi.org/10.1109/JOE.2015.2461712
  3. S. Lee and N. C. Makris, "The array invariant," J. Acoust. Soc. Am. 119, 336-351 (2006). https://doi.org/10.1121/1.2139074
  4. C. Cho, H. C. Song, and W. S. Hodgkiss, "Robust source-range estimation using the array/waveguide invariant and a vertical array," J. Acoust. Soc. Am. 139, 63-69 (2016). https://doi.org/10.1121/1.4939121
  5. H. C. Song and C. Cho, "Array invariant-based source localization in shallow water using a sparse vertical array," J. Acoust. Soc. Am. 141, 183-188 (2017). https://doi.org/10.1121/1.4973812
  6. C. Cho, H. C. Song, P. Hursky, and S. M. Jesus, "Iterative range estimation in a sloping-bottom shallow-water waveguide using the generalized array invariant," J. Acoust. Soc. Am. 142, 55-60 (2017). https://doi.org/10.1121/1.4990670
  7. G. Byun, H. C. Song, and C. Cho, "Adaptive array invariant in range-dependent environments with variable bathymetry," J. Acoust. Soc. Am. 149, 1363-1370 (2021). https://doi.org/10.1121/10.0003562
  8. K. G. Sabra, H. C. Song, and D. R. Dowling, "Ray-based blind deconvolution in ocean sound channels," J. Acoust. Soc. Am. 127, EL42-EL47 (2010). https://doi.org/10.1121/1.3284548
  9. S. H. Abadi, D. Rouseff, and D. R. Dowling, "Blind deconvolution for robust signal estimation and approximate source localization," J. Acoust. Soc. Am. 131, 2599-2610 (2010). https://doi.org/10.1121/1.3688502
  10. S. Byun, C. M. A. Verlinder, and K. G. Sabra, "Blind deconvolution of shipping sources in an ocean waveguide," J. Acoust. Soc. Am. 141, 797-807 (2017). https://doi.org/10.1121/1.4976046
  11. S. Byun, G. Byun, and K. G. Sabra, "Ray-based blind deconvolution of shipping sources using multiple beams separated by alternating projection," J. Acoust. Soc. Am. 144, 3525-3532 (2018). https://doi.org/10.1121/1.5083834
  12. N. C. Durofchalk and K. G. Sabra, "Analysis of the ray-based blind deconvolution algorithm for shipping sources," J. Acoust. Soc. Am. 147, 1927-1938 (2020). https://doi.org/10.1121/10.0000919
  13. G. Byun and H. C. Song, "Adaptive array invariant," J. Acoust. Soc. Am. 148, 925-933 (2020). https://doi.org/10.1121/10.0001768
  14. G. Byun, J. S. Kim, C. Cho, H. C. Song, and S. Byun, "Array invariant based ranging of a source of opportunity," J. Acoust. Soc. Am. 142, EL286-EL291 (2017). https://doi.org/10.1121/1.5003327
  15. G. Byun, C. Cho, H. C. Song, J. S. Kim, and S. Byun, "Array invariant based calibration of array tilt using a source of opportunity," J. Acoust. Soc. Am. 143, 1318-1325 (2018). https://doi.org/10.1121/1.5025844
  16. G. Byun, H. C. Song, J. S. Kim, and J. Park, "Real-time tracking of a surface ship using a bottom-mounted horizontal array," J. Acoust. Soc. Am. 144, 2375-2382 (2018). https://doi.org/10.1121/1.5064791
  17. H. C. Song and G. Byun, "Simultaneous localization of a surface ship and a submerged towed source," J. Acoust. Soc. Am. 144, 2238-2241 (2018). https://doi.org/10.1121/1.5063352
  18. G. Byun, H. C. Song, and J. S. Kim, "Performance comparisons of array invariant and matched field processing using broadband ship noise and a tilted vertical array," J. Acoust. Soc. Am. 144, 3067-3074 (2018). https://doi.org/10.1121/1.5080603
  19. H. C. Song, G. Byun, and J. S. Kim, "Remote acoustic illumination using time reversal and a surface ship," J. Acoust. Soc. Am. 145, 1565-1568 (2019). https://doi.org/10.1121/1.5095363
  20. G. Byun, H. C. Song, and S. Byun, "Localization of multiple ships using a vertical array in shallow water," J. Acoust. Soc. Am. 145, EL528-EL533 (2019). https://doi.org/10.1121/1.5111773
  21. H. C. Song and G. Byun, "Extrapolating Green's functions using the waveguide invariant theory," J. Acoust. Soc. Am. 147, 2150-2158 (2020). https://doi.org/10.1121/10.0000969
  22. G. Byun and H. C. Song, "Extracting Green's functions between ships of opportunity using a vertical array," J. Acoust. Soc. Am. 148, 1800-1807 (2020). https://doi.org/10.1121/10.0002103
  23. H. C. Song and G. Byun, "Localization of a distant ship using a guide ship and a vertical array," J. Acoust. Soc. Am. 149, 2173-2178 (2021). https://doi.org/10.1121/10.0003957
  24. S. Cho, G. Byun, S. Byun, and J. S. Kim, "Ray back-propagation-based ship localization" (in Korean), J. Acoust. Soc. Kr. 37, 196-205 (2018).
  25. S. Cho, D. Kim, and J. S. Kim, "Source depth discrimination based on channel impulse response" (in Korean), J. Acoust. Soc. Kr. 38, 120-127 (2019).
  26. X. Zhang, N. C. Durofchalk, H. Niu, L. Wu, R. Zhang, and K. G. Sabra, "Geoacoustic inversion using ray-based blind deconvolution of shipping sources," J. Acoust. Soc. Am. 147, 285-299 (2020). https://doi.org/10.1121/10.0000605
  27. S. Oh, G. Byun, and J. S. Kim, "Performance improvement of underwater acoustic communication using ray-based blind deconvolution in passive time reversal mirror" (in Korean), J. Acoust. Soc. Kr. 35, 375-382 (2016). https://doi.org/10.7776/ASK.2016.35.5.375
  28. J. Lee, G. Lee, K. Kim, and W. Kim, "Sea trial results of long range underwater acoustic communication based on frequency modulation in the East Sea" (in Korean), J. Acoust. Soc. Kr. 38, 371-377 (2019).
  29. H. Park, D. Kim, J. S. Kim, J. Hahn, and J. Park, "Performance improvement of long-range underwater acoustic communication in deep water using spatiotemporal diversity" (in Korean), J. Acoust. Soc. Kr. 38, 587-592 (2019).
  30. D. Kim, H. Park, J. S. Kim, J. Park, and J. Hahn, "Performance analysis of underwater acoustic communication based on beam diversity in deep water" (in Korean), J. Acoust. Soc. Kr. 38, 678-686 (2019).
  31. D. Kim, D. Kim, J. S. Kim, and J. Hahn, "Long-range multiple-input-multiple-output underwater communication in deep water" (in Korean), J. Acoust. Soc. Kr. 40, 417-427 (2021).
  32. H. L. van Trees, Optimum Array Processing: Part IV of Detection, Dstimation, and Modulation Theory (John Wiley & Sons, New York, 2004), pp. 50-55.
  33. J. Song, D. Kim, Y. Choi, and J. S. Kim, "Study of acoustic characteristics of east sea dolphin in BLAC18" (in Korean), Proc. J. Acoust. Soc. Kr. Suppl. 1(s) 38, 232 (2019).
  34. Y. Yoon, H. Sohn, K. Park, Y. Choi, S. Kim, and J. Choi, "Study of acoustic characteristics of common dolphins Delphinus delphis in the East Sea" (in Korean), Korean J. Fish. Aquat. Sci. 50, 406-412 (2017). https://doi.org/10.5657/KFAS.2017.0406