DOI QR코드

DOI QR Code

생체모방 은밀 수중 음향 통신 연구 동향

Research trends of biomimetic covert underwater acoustic communication

  • 투고 : 2022.01.13
  • 심사 : 2022.03.04
  • 발행 : 2022.03.31

초록

은밀 수중 통신은 수중에서 신호를 전송할 때 다른 대상이 감지하지 못하도록 보내는 통신 방법이다. 수중에서 정보를 은밀하게 보내는 방법은 Radio Frequency(RF)에서 사용되는 방법과 유사하게 Low Probability of Detection(LPD)와 Low Probability of Intercept(LPI)의 특성을 고려하여 설계된다. 그러나 수중에서 음향을 이용하여 통신하는 경우 협소한 주파수 대역폭으로 인해 은밀성을 확보하기 어렵다. 기존의 신호 전송 전력을 낮추거나 변조 대역폭을 늘리는 방법과는 다르게 수중 포유류의 음향 신호를 모방하여 신호를 보내는 방법이 연구되고 있다. 생체모방 은밀 수중향통신은 주로 돌고래나 고래가 발생시키는 클릭음이나 휘슬음을 모방한다. 본 논문은 이러한 생체모방 은밀 수중음향통신의 발전 가능성과 향후 필요한 연구 분야를 파악하기 위해 생체모방 통신 기술들을 조사하고 이에 따른 연구 동향을 소개한다.

Covert Underwater Communication (CUC) signals should not be detected by other unintended users. Similar to the method used in Radio Frequency (RF), covert communication technique sending information underwater is designed in consideration of the characteristics of Low Probability of Detection (LPD) and Low Probability of Intercept (LPI). These conventional methods, however, are difficult to be used in the underwater communications because of the narrow frequency bandwidth. Unlike the conventional methods of reducing transmission power or increasing the modulation bandwidth, a method of mimicking the acoustic signal of an underwater mammal is being studied. The biomimetic underwater acoustic communication mainly mimics the click or whistle sound produced by dolphin or whale. This paper investigates biomimetic communication method and introduces research trends to understand the potential for the development of such biomimetic covert underwater acoustic communication and future research areas.

키워드

과제정보

본 연구는 국방과학연구소의 지원으로 수행되었음(UD200010DD).

참고문헌

  1. H. Lee, J. Ahn, Y. Kim, S. Lee, and J. Chung, "A biomimetic communication method based on time shift using dolphin whistle," J. Acoust. Soc. Kr. 38. 580-586 (2019).
  2. S. Liu, M. Wang, T. Ma, G. Qiao, and M. Bilal, "Covert underwater communication by camouflaging sea piling sounds," Appl. Acoust. 142, 29-35 (2018). https://doi.org/10.1016/j.apacoust.2018.06.001
  3. G. Qiao, T. Ma, S. Liu, and M. Bilal, "A frequency hopping pattern inspired bionic underwater acoustic communication," Phys, Commun. 46, 101288 (2021). https://doi.org/10.1016/j.phycom.2021.101288
  4. J. Ling, H. He, J. Li, and W. Roberts, "Covert underwater acoustic communications," J. Acoust. Soc. Am. 128, 2898-2909 (2010). https://doi.org/10.1121/1.3493454
  5. R. Diamant, L. Lampe, and E. Gamroth, "Bounds for low probability of detection for underwater acoustic communication," IEEE J. Oceanic Eng. 42, 143-155 (2016). https://doi.org/10.1109/JOE.2016.2550278
  6. F. Qu, X. Qin, L. Yang, and T. C. Yang, "Spread spectrum method using multiple sequences for underwater acoustic communications," IEEE J. Oceanic Eng. 43, 1215-1226 (2018). https://doi.org/10.1109/joe.2017.2750298
  7. X. Shu, J. Wang, H. Wang, and X. Yang, "Chaotic direct sequence spread spectrum for secure underwater acoustic communication," Applied Acoustics, 104, 57-66 (2016). https://doi.org/10.1016/j.apacoust.2015.10.015
  8. T. C. Yang and W. B. Yang, "Low probability of detection underwater acoustic communications using direct-sequence spread spectrum," J. Acoust. Soc. Am. 124, 3632-3647 (2008). https://doi.org/10.1121/1.2996329
  9. J. Ahn, H. Lee, Y. Kim, W. Kim, and J. Chung, "Multipath combining method for frequency shift keying underwater communications mimicking dolphin whistle" (in Korean), J. Acoust. Soc. Kr. 37, 404-411 (2018).
  10. W. W. L. Au, The Sonar of Dolphins (Springer-Verlag, New York, 1993), pp. 277.
  11. J. E. Reymolds and S. A. Rommel, Biology of Marine Mammals (Smithsonian Inst, Washington, 1999), pp. 287.
  12. H. S. Dol, B. A. J. Quesson, and F. P. A. Benders, "Covert underwater communication with marine mammal sounds," Proc. UDT Europe, 1-7 (2008).
  13. S. Liu, G. Qiao, and A. Ismail, "Covert underwater acoustic communication using dolphin sounds," J. Acoust. Soc. Am. 133, EL300-EL306 (2013). https://doi.org/10.1121/1.4795219
  14. S. Liu, B. Liu, Y. Yin, and G. Qiao, "M-ray covert underwater acoustic communication by mimicking dolphin sounds," J. Harbin Eng. Univ. 35, 119-125 (2014).
  15. S. Liu, G. Qiao, and L. Zhang, "Biologically inspired covert underwater acoustic communication using high frequency dolphin clicks," Proc. IEEE OCEANS, 1-5 (2013).
  16. Y. Jia, G. Liu, and L. Zhang, "Bionic camouflage underwater acoustic communication based on sea lion sounds," Proc. ICCAIS. 332-336 (2015).
  17. J. Jiajia, W. Xianquan, D. Fajie, F. Xiao, L. Chunyue, and S. Zhongbo, "A basic bio-inspired camouflage communication frame design and applications for secure underwater communication among military underwater platforms," IEEE Access, 8, 24927-24940 (2020). https://doi.org/10.1109/access.2020.2970746
  18. J. Jiang, C. Li, X. Wang, Z. Sun, X. Fu, and F. Duan, "Covert underwater communication based on combined encoding of diverse time-frequency characteristics of sperm whale clicks," Appl. Acoust. 171, 107660 (2021). https://doi.org/10.1016/j.apacoust.2020.107660
  19. A. ElMoslimany, M. Zhou, T. M. Duman, and P. S. Antonia, "A new signaling scheme for underwater acoustic communications," Proc. IEEE OCEANS, 1-5 (2013).
  20. A. Elmo silmay, M. Zho u, T. M. Duman, and P. S. Antonia, "An underwater acoustic communication scheme exploiting biological sounds," Wirel. Commun. Mob. Comput. 16, 2194-2211 (2016). https://doi.org/10.1002/wcm.2676
  21. S. Liu, G. Qiao, A. Ismail, B. Liu, and L. Zhang, "Covert underwater acoustic communication using whale noise masking on DSSS signal," Proc. IEEE OCEANS, 1-6 (2013).
  22. S. Liu, T. Ma, G. Qiao, and B. Kuang, "Bionic communication by dolphin whistle with continuous-phase based on MSK modulation," Proc. IEEE ICSPCC. 1-5 (2016).
  23. X. Han, J. Yin, P. Du, and X. Zhang, "Experimental demonstration of underwater acoustic communication using bionic signals," Appl. Acoust. 78, 7-10 (2014). https://doi.org/10.1016/j.apacoust.2013.10.009
  24. M. Bilal, S. Liu, G. Qiao, L. Wan, and Y. Yao, "Bionic Morse coding mimicking Humpback whale song for covert underwater communication," Appl. Sci. 10, 186 (2019). https://doi.org/10.3390/app10010186
  25. H. Lee, J. Ahn, Y. Kim, S. Lee, and J. Chung, "Time-frequency modulation based mimicking dolphin whistle for covert underwater acoustic communication," Jpn. J. Appl. Phys. 59, SKKF03 (2020). https://doi.org/10.35848/1347-4065/ab87f0
  26. J. Ahn, H. Lee, Y. Kim, W. Kim, and J. Chung, "Biomimicking covert communication by time-frequency shift modulation for increasing mimicking and BER perfor- mance," Sensors, 21, 2184 (2021).
  27. J. Ahn, H. Lee, Y. Kim, W. Kim, and J. Chung, "Machine learning based biomimetic underwater covert acoustic communication method using dolphin whistle contours," Sensors, 20, 6166 (2020). https://doi.org/10.3390/s20216166
  28. S. Liu, T. Ma, G. Qiao, L. Ma, and Y. Yin, "Biologically inspired covert underwater acoustic communication by mimicking dolphin whistles," Applied Acoustics, 120, 120-128 (2017). https://doi.org/10.1016/j.apacoust.2017.01.018
  29. J. Ahn, H. Lee, Y. Kim, S. Lee, and J. Chung, "Mimicking dolphin whistles with continuously varying carrier frequency modulation for covert underwater acoustic communication," Jpn. J. Appl. Phys. 58, SGGF05 (2019). https://doi.org/10.7567/1347-4065/ab14d2
  30. H. Lee, J. Ahn, Y. Kim, S. Seo l, W. Kim, and J. Chung, "OFDM based mimicking dolphin whistle for covert underwater communications" (in Korean), J. Acoust. Soc. Kr. 40, 219-227 (2021).