DOI QR코드

DOI QR Code

SOME IRRATIONAL QUARTIC THREEFOLDS

  • Hong, Kyusik (Department of Mathematics Education Jeonju University) ;
  • Won, Joonyeong (Department of Mathematics Ewha Womans University)
  • Received : 2021.02.22
  • Accepted : 2021.05.12
  • Published : 2022.03.31

Abstract

We study the factoriality of a nodal quartic hypersurface V4 in ℙ4 when there is a hyperplane in ℙ4 containing all the nodes of V4. As an application, we obtain new examples of irrational quartic 3-folds.

Keywords

Acknowledgement

The first author was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2021R1F1A1059506) and the Open KIAS Center at Korea Institute for Advanced Study. The second author was supported by the National Research Foundation of Korea(NRF-2020R1A2C1A01008018) and a KIAS Individual Grant (SP037003) via the Center for Mathematical Challenges at Korea Institute for Advanced Study. This research was supported by the Research Grant of Jeonju University in 2021.

References

  1. V. A. Alekseev, On conditions for the rationality of three-folds with a pencil of del Pezzo surfaces of degree 4, Mat. Zametki 41 (1987), no. 5, 724-730, 766.
  2. A. Beauville, Varietes de Prym et jacobiennes intermediaires, Ann. Sci. Ecole Norm. Sup. (4) 10 (1977), no. 3, 309-391. https://doi.org/10.24033/asens.1329
  3. I. Cheltsov, On factoriality of nodal threefolds, J. Algebraic Geom. 14 (2005), no. 4, 663-690. https://doi.org/10.1090/S1056-3911-05-00405-4
  4. I. Cheltsov, Nonrational nodal quartic threefolds, Pacific J. Math. 226 (2006), no. 1, 65-81. https://doi.org/10.2140/pjm.2006.226.65
  5. I. Cheltsov, Factorial threefold hypersurfaces, J. Algebraic Geom. 19 (2010), no. 4, 781-791. https://doi.org/10.1090/S1056-3911-09-00522-0
  6. I. Cheltsov and J. Park, Factorial hypersurfaces in P 4 with nodes, Geom. Dedicata 121 (2006), 205-219. https://doi.org/10.1007/s10711-006-9099-3
  7. A. Corti, Factoring birational maps of threefolds after Sarkisov, J. Algebraic Geom. 4 (1995), no. 2, 223-254.
  8. A. Corti, Singularities of linear systems and 3-fold birational geometry, in Explicit birational geometry of 3-folds, 259-312, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000.
  9. S. Cynk, Defect of a nodal hypersurface, Manuscripta Math. 104 (2001), no. 3, 325-331. https://doi.org/10.1007/s002290170030
  10. C. H. Clemens and P. A. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math. (2) 95 (1972), 281-356. https://doi.org/10.2307/1970801
  11. D. Eisenbud and J. Harris, On Varieties of minimal degree, Proceedings of Symposia in Pure Math. 46, 1987.
  12. A. J. de Jong, N. I. Shepherd-Barron, and A. Van de Ven, On the Burkhardt quartic, Math. Ann. 286 (1990), no. 1-3, 309-328. https://doi.org/10.1007/BF01453578
  13. A. Dimca, Betti numbers of hypersurfaces and defects of linear systems, Duke Math. J. 60 (1990), no. 1, 285-298. https://doi.org/10.1215/S0012-7094-90-06010-7
  14. D. Eisenbud, M. Green, and J. Harris, Higher Castelnuovo theory, Asterisque No. 218 (1993), 187-202.
  15. R. Friedman, Simultaneous resolution of threefold double points, Math. Ann. 274 (1986), no. 4, 671-689. https://doi.org/10.1007/BF01458602
  16. R. Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Mathematics, Vol. 156, Springer-Verlag, Berlin, 1970.
  17. K. Hong, Nonrationality of nodal quartic threefolds, Pacific J. Math. 266 (2013), no. 1, 31-42. https://doi.org/10.2140/pjm.2013.266.31
  18. V. A. Iskovskih and Ju. I. Manin, Three-dimensional quartics and counterexamples to the Luroth problem, Mat. Sb. (N.S.) 86(128) (1971), 140-166.
  19. V. A. Iskovskikh and Yu. G. Prokhorov, Fano varieties, in Algebraic geometry, V, 1-247, Encyclopaedia Math. Sci., 47, Springer, Berlin, 1999.
  20. A.-S. Kaloghiros, The defect of Fano 3-folds, J. Algebraic Geom. 20 (2011), no. 1, 127-149. https://doi.org/10.1090/S1056-3911-09-00531-1
  21. A.-S. Kaloghiros, A classification of terminal quartic 3-folds and applications to rationality questions, Math. Ann. 354 (2012), no. 1, 263-296. https://doi.org/10.1007/s00208-011-0658-z
  22. R. Kloosterman, Maximal families of nodal varieties with defect, arXiv:1310.0227v4
  23. D. Kosta, Factoriality condition of some nodal threefolds in ℙ4, Manuscripta Math. 127 (2008), no. 2, 151-166. https://doi.org/10.1007/s00229-008-0197-4
  24. M. Mella, Birational geometry of quartic 3-folds. II. The importance of being ℚ-factorial, Math. Ann. 330 (2004), no. 1, 107-126. https://doi.org/10.1007/s00208-004-0542-1
  25. A. V. Pukhlikov, Birational automorphisms of three-dimensional algebraic varieties with a pencil of del Pezzo surfaces, Izv. Math. 62 (1998), no. 1, 115-155; translated from Izv. Ross. Akad. Nauk Ser. Mat. 62 (1998), no. 1, 123-164. https://doi.org/10.1070/im1998v062n01ABEH000188
  26. V. G. Sarkisov, Birational automorphisms of conic bundles, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 4, 918-945, 974.
  27. V. V. Shokurov, Prym varieties: theory and applications, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), no. 4, 785-855.
  28. K. A. Shramov, Q-factorial quartic threefolds, Sb. Math. 198 (2007), no. 7-8, 1165-1174; translated from Mat. Sb. 198 (2007), no. 8, 103-114. https://doi.org/10.1070/SM2007v198n08ABEH003878
  29. A. N. Tyurin, The middle Jacobian of three-dimensional varieties, J. Soviet Math. 13 (1980), 707-745. https://doi.org/10.1007/BF01084562
  30. A. N. Varchenko, Semicontinuity of the spectrum and an upper bound for the number of singular points of the projective hypersurface, Dokl. Akad. Nauk SSSR 270 (1983), no. 6, 1294-1297.